第20章 反常积分:基本概念

第20章 反常积分:基本概念

主要内容:

  • 反常积分、收敛和发散的定义
  • 关于没有边界区域的反常积分
  • 关于比较判别法、极限比较判别法、p判别法和绝对收敛判别法的理论基础

20.1 收敛和发散

考虑积分

baf(x)dx ∫ a b f ( x ) d x

当函数 f f 在区间[a,b]内有一条垂直渐近线:函数在渐近线附近变得很大,且没有界限。上述积分就变成的反常积分。

即使函数是有界的,也会出现一种不同类型的无界。即闭区间 [a,b] [ a , b ] 变成一个无界区间,如: [,3] [ − ∞ , 3 ] .

综上:如果出现以下情况,积分 baf(x)dx ∫ a b f ( x ) d x 就是反常积分:

(1)函数 f f 在闭区间内是无界的;

(2)闭区间本身是无界的;

如果函数f(x)接近于 x=c x = c 时是无界的,就称该函数在 x=c x = c 点有一个破裂点。

20.1.1 收敛和发散

如果仅仅在 x x 接近于a的时候该函数 f(x) f ( x ) 是无界的,则定义:

baf(x)dx=limσ>0+ba+σf(x)dx ∫ a b f ( x ) d x = lim σ − > 0 + ∫ a + σ b f ( x ) d x

该极限存在或不存在,我们就说该反常积分收敛或发散。

一个反常积分在有界区间的收敛和发散,仅仅由它的被积函数在非常接近破裂点时的走势决定。

20.2 关于无穷区间的积分

定义:

af(x)dx=limN>Naf(x)dx ∫ a ∞ f ( x ) d x = lim N − > ∞ ∫ a N f ( x ) d x

假设该极限存在,则反常积分收敛,否则发散。

一个反常积分在无界区间的收敛和发散,仅仅由它的被积函数在自变量接近于无穷大时的走势决定。

20.3 比较判别法

用一个函数的反常积分的结果,判别另一个函数的反常积分。

20.4 极限比较判别法

基本思想:假设两个函数在破裂点附近的表现非常接近(再没有其它破裂点),那么,两个函数在破裂点上区间的反常积分同时收敛或发散。

20.4.1 函数互为渐近线

定义:当 x>a x − > a 时, f(x) g(x) f ( x )   g ( x ) limx>af(x)g(x)=1 lim x − > a f ( x ) g ( x ) = 1 有同样的意义。即当 x>a x − > a 时,两个函数渐进等价。

极限比较判别法可以转化为比较判别法。

20.5 p判别法

p判别法实质上是比较判别法和极限比较判别法的一个特例:找一个常见的简单函数形式 1xp 1 x p ,根据p的值,判定 x x 的幂在破裂点区间上反常积分的收敛或发散性。

20.6 绝对收敛判别法

类似于夹逼定理,函数的绝对值在积分区间收敛,相当于极限的上界和下界收敛。

证明技巧:设g(x)=|f(x)|+f(x),可知,但 f(x)<0 f ( x ) < 0 时, g(x)=0 g ( x ) = 0 ,当 f(x)>0 f ( x ) > 0 时, g(x)=2f(x) g ( x ) = 2 f ( x ) 。因此: 0bag(x)dx2ba|f(x)|dx 0 ≤ ∫ a b g ( x ) d x ≤ 2 ∫ a b | f ( x ) | d x 。由比较判别法,可知,如果 f(x) f ( x ) 绝对收敛,则 g(x) g ( x ) 绝对收敛。

由于 f(x)=g(x)|f(x)| f ( x ) = g ( x ) − | f ( x ) | ,有 baf(x)dx=bag(x)dxba|f(x)|dx ∫ a b f ( x ) d x = ∫ a b g ( x ) d x − ∫ a b | f ( x ) | d x ,当等式右侧两项收敛时,左侧也收敛。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值