Ollama+AnythingLLM 搭建本地知识库

一、搭建本地知识库业务背景

         数据自主可控

           将关键知识和信息存储在本地服务器上,意味着企业或组织能够完全控制数据的访问权限、存储方式以及备份策略。这避免了将数据托管在第三方云服务上可能带来的数据泄露风险,因为云服务提供商的安全漏洞或不当操作都可能影响数据的安全性。

         减少网络攻击面

          当知识库部署在本地时,它不会直接暴露在互联网上,从而减少了遭受网络攻击的风险。互联网上的恶意流量、钓鱼攻击、DDoS攻击等威胁很难直接作用于内部网络中的知识库系统。即使本地网络通过VPN等方式与外部网络相连,也可以通过严格的访问控制和安全策略来限制外部访问,进一步降低被攻击的风险。

         合规性要求

          在某些行业或地区,由于法律法规的要求,企业或组织可能需要将敏感数据存储在本地,以确保数据的隐私性和合规性。例如,金融行业、医疗行业等对于数据的安全性和隐私性有极高的要求,搭建本地知识库可以更好地满足这些合规性要求。本地存储还便于进行定期的审计和检查,以确保数据的使用和处理符合相关规定和标准。

        快速恢复和容灾能力

         本地知识库可以更容易地实现数据的快速恢复和容灾备份。当发生硬件故障、自然灾害等突发事件时,只要本地存储设备完好无损,就可以迅速恢复数据,减少业务中断的时间。与此同时,本地存储还可以结合异地备份策略,进一步提高数据的可靠性和安全性。

  二、什么是RAG 和LLM又是什么关系

        RAG的定义

         RAG代表检索增强生成(Retrieval-Augmented Generation),是一种结合检索和生成的自然语言处理模型架构。RAG通过将检索模型和生成模型结合在一起,提高了生成内容的相关性和质量。具体而言,RAG利用检索模型从给定的文档或知识库中检索相关信息,并将其与生成模型结合,以生成更准确、更有价值的输出。这种架构特别适用于需要引用外部信息或特定领域知识的任务,如问答系统、文本摘要和对话系统等。

       LLM的定义

LLM代表大型语言模型(Large Language Model),是一种基于深度学习的人工智能算法,通过训练大量文本数据,学习语言的语法、语义和上下文信息,从而能够对自然语言文本进行建模。LLM在自然语言处理领域具有广泛的应用,包括但不限于文本生成、文本分类、机器翻译、情感分析等。

      RAG与LLM的关系

  1. 优化与扩展:RAG是对LLM的一种优化和扩展。LLM在面临特定领域或高度专业化的查询时,有时会虚构事实,且当所寻求的信息超出模型训练数据范围或需要最新数据时,可能无法提供准确答案。RAG通过整合检索到的外部数据,不仅提高了生成文本的准确性,还增强了文本的相关性,从而解决了LLM的某些局限性。
  2. 协同工作:在RAG架构中,LLM和检索模型协同工作。检索模型负责从大量数据中检索与生成任务相关的信息,而LLM则利用这些信息生成最终的输出。这种结合使得RAG能够在处理复杂任务时表现出更高的准确性和实用性。
  3. 应用场景:RAG和LLM在自然语言处理领域各有其独特的功能和应用。RAG特别适用于需要外部知识支持的场景,如问答系统、文本摘要等;而LLM则作为自然语言处理应用的基础模型,为各种任务提供强大的生成能力。在实际应用中,RAG和LLM经常结合使用,以更好地满足各种自然语言处理任务的需求。

三、AnythingLLM和Ollama 集成

      1、安装软件

        1)安装Ollama 及大模型

        2)安装 AnythingLLM,下载地址:https://useanything.com/download

      2、配置AnythingLLM环境

        1)  主界面、设置本地模型、向量转换模型、向量数据库

3、使用默认大模型,咨询你对萝卜快跑了解吗 

4、上传本地数据,再次咨询你对萝卜快跑了解吗

    1)上传本地文件到工作空间

    2)转换成向量数据存储

    3)再次使用大模型问答 

### 使用 DeepSeek、OllamaAnythingLLM 构建本地知识库 #### 准备工作 为了成功构建包含 DeepSeek、OllamaAnythingLLM本地知识库,需先确认环境配置满足最低硬件需求,并完成必要的软件安装。 - **操作系统支持**:Linux, macOS 或 Windows (建议使用 WSL2)[^1]。 - **依赖项准备**:Python 3.x 版本及其开发工具链;Docker 及 Docker Compose 安装完毕并能正常运行[^2]。 #### 配置与部署 ##### 获取所需资源 通过命令行拉取最新版本的 Ollama 模型文件本地存储: ```bash ollama pull bge-m3 ``` 此操作会下载指定的大规模预训练语言模型及相关组件,确保后续处理流程顺利进行。 ##### 初始化项目结构 创建一个新的目录用于存放整个项目的源码以及相关配置文件。在此基础上初始化 Git 仓库以便于版本控制管理。 ```bash mkdir my_local_knowledge_base && cd $_ git init . ``` ##### 设置 DeepSeek 环境变量 编辑 `.env` 文件加入如下内容以适应特定场景下的参数调整(如 API 密钥、端口映射等)。这一步骤对于保障系统的稳定性和安全性至关重要。 ```plaintext DEEPSEEK_API_KEY=your_api_key_here PORT=8080 DEBUG=True ``` ##### 整合 AnythingLLM 平台 利用 AnythingLLM 提供的功能接口快速对接各类外部数据源,包括但不限于静态 HTML 页面、PDF 文档集或是关系型数据库表单记录。具体实现方式可参照官方文档说明中的 Python SDK 应用实例。 ```python from anythingllm import DocumentLoader, KnowledgeBaseBuilder loader = DocumentLoader(source="path/to/your/documents") builder = KnowledgeBaseBuilder(loader) knowledge_base = builder.build() ``` #### 启动服务 一切就绪之后,在终端执行启动脚本来激活全部微服务单元,使之协同运作形成完整的解决方案栈。 ```bash docker-compose up -d --build ``` 此时访问 `http://localhost:8080` 即可见证由 DeepSeek 加持的人工智能驱动的知识检索界面雏形初现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值