Niagara模块微信公众号连接

很神奇,本来以为经理让我们连接微信公众号和niagara,本来以为微信公众号的url是阿里云,疯狂配置好久之后,看了网课才想到阿里云部署有点麻烦,我实属草鸡。像我可以做好久的测试,然后这一下部署一次,我觉得真的会炸,好吧,其实我也不知道这返回的值在哪。
用了内网穿透的方法。跟着网课也连上了token。说明java 用tomcat部署的方法有效
开始niagara,在n4中创建一个module,这个真的让我炸了,路径小王子疯狂找不到路径。但是发现artifacts没有servlet,就知道问题出在哪里,疯狂配置artifacts。
在这里插入图片描述
要创建一个classes ,一个lib,WEB-INF
module创造的啥也没有,所以这些都是要自己配啊!
在这里插入图片描述
这是一个定位到web.xml 下面是定位到web-inf
在这里插入图片描述
记得要在module中加入一个web
真的在module中啥也没有
那个web.xml 要是不知道怎么写,就去tomcat那边conf中找web.xml

重点看了社区此才知道,要是要入jar包等第三方中加一句话

  compileOnly group: 'javax.servlet', name: 'javax.servlet-api', version:'4.0.1'
 

可见多看文档的重要性
我突然想到niagara要用80端口
也不知道为啥,他写的竟然500了 太难了!

后记

感觉这几天终于有了成果,草鸡真的是喜悦万分,哈哈哈哈哈,冲冲冲。要多看文档,不然真的啥也不知道,要静下心来,就可以知道问题来自哪里。就算遇到问题也不要害怕,解决了这个问题,大不了还有一个更大的问题,但是解决完之后,就是成功了呀!哈哈哈哈,草鸡又要开始冲冲冲!

好了,要多多看那个代码了,毕竟人家给了那么多的举例代码,加油草鸡。你是最棒的。
在这里插入图片描述

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值