陈宝林《最优化理论与算法》超详细学习笔记 (五)————最优性条件 之 KKT条件

本文详细介绍了最优化问题中的Lagrange对偶问题,包括原问题、Lagrange函数和对偶函数的概念。讨论了强对偶性和弱对偶性,指出在凸优化问题中强对偶性通常成立。最后,阐述了KKT条件作为原问题和对偶问题最优解的必要条件,并解释了其在凸优化中的重要性。
摘要由CSDN通过智能技术生成

陈宝林《最优化理论与算法》超详细学习笔记 (五)————最优性条件 之 KKT条件

Lagrange对偶问题

原问题

对于一个最优化问题:
min ⁡ f 0 ( x ) s.t. f i ( x ) ≤ 0 , i = 1 , ⋯   , m h i ( x ) = 0 , i = 1 , ⋯   , p \begin{array}{ll}\min & f_{0}(x) \\ \text {s.t.} & f_{i}(x) \leq 0, \quad i=1, \cdots, m \\ & h_{i}(x)=0, \quad i=1, \cdots, p\end{array} mins.t.f0(x)fi(x)0,i=1,,mhi(x)=0,i=1,,p
f 0 ( x ) f_{0}(x) f0(x)为目标函数, f i ( x ) ≤ 0 f_{i}(x)\leq0 fi(x)0为不等式约束, h i ( x ) = 0 h_{i}(x)=0 hi(x)=0为等式约束.

Lagrange函数

通过引入不等式约束和等式约束的lagranage乘子 λ i \lambda_i λi v i v_i vi,得到原问题的Lagrange函数为:
L ( x , λ , v ) = f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 p v i h i ( x ) L(x, \lambda, v)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} v_{i} h_{i}(x) L(x,λ,v)=

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值