Zero-shot Learning零样本学习 论文阅读(三)——Semantic Autoencoder for Zero-Shot Learning

本文介绍了如何使用Semantic Autoencoder(SAE)解决零样本学习中的领域漂移问题。SAE通过结合自编码器结构和属性约束,将输入数据映射到语义空间,从而在未见过的类别上进行有效预测。文章详细阐述了算法原理,包括目标函数的构建、约束条件的软化以及Sylvester方程的求解方法,并讨论了两种预测方法。实验表明这种方法在大规模数据集上表现优秀。
摘要由CSDN通过智能技术生成

Zero-shot Learning零样本学习 论文阅读(三)——Semantic Autoencoder for Zero-Shot Learning

Semantic Autoencoder for Zero-Shot Learning提出的算法被简称为SAE,首次引入了自编码器结构,一定程度上解决了zero-shot learning中主要问题之一的领域漂移(domain shift)问题,直接导致之后的新方法大都采用了这种自编码器的结构。

背景

领域漂移(domain shift)

领域漂移问题首次被提出是在《Transductive Multi-View Zero-Shot Learning》这篇文章中,简单来说就是同一属性在不同的类别中,视觉特征的差异可能很大。比如,斑马和猪都有尾巴,那么在类别语义表示中,对于“有尾巴”这一属性,斑马和猪都是值“1”,但是在图片数据中,两者尾巴的视觉特征却差异很大,如果用猪的图片来训练,需要预测的是斑马,就很难达到预期的目标。

自编码器

自编码器(Autoencoder)是一种利用反向传播算法使得输出值等于输入值的神经网络,它先将输入压缩成潜在空间表征,然后通过这种表征来重构输出。
例如,我们输入一张图片,通过encoder将其现压缩成潜在表征(Latent Representation),再通过decoder将潜在表征重构成图片作为输出。
在这里插入图片描述
因此,自编码器由两部分组成:

  1. 编码器,将输入压缩成潜在空间表征,用函数 h = f ( x ) h=f(x) h=f(x)表示;
  2. 解码器,重构潜在空间表征得到输出,用函数 s = g ( h ) s=g(h) s=g(h)表示。

自编码器就可以用函数 g ( f ( x ) ) = s g(f(x))=s g(f(x))=s表示, x x x是输入, s s s是输出,让 x x x s s s相近。
那么,让输出和输入的东西一样,那这个自编码器还有什么用呢?
其实,我们的目的在于,通过训练输出值等于输入值的自编码器,让潜在表征 h h h作为有价值的属性。
通常,为了从自编码器获得有用特征,我们会限制h的维度使其小于输入x,使得自编码器能学习到数据中最重要的特征。

算法原理

思路

在这里插入图片描述

在传统的自编码器的目标函数 m i n W , W ∗ ∥ X − W ∗ W X ∥ F 2 min_{W,W^*}\|X-W^*WX\|^2_F minW,WXWWXF2中,为了使中间层能够表征属性,在这个目标函数中加入一个约束 W X = S WX=S WX=S S S S为属性对应的语义向量,即 m i n W , W ∗ ∥ X − W ∗ W X ∥ F 2 , s . t . W X = S min_{W,W^*}\|X-W^*WX\|^2_F,s.t.WX=S minW,WXWWXF2,s.t.WX=S,以此来最优化求解。

设定

X ∈ R d ∗ N \quad X \in R^{d * N} XRdN 代表 d d d 维共 N N N 个特征向量组成的矩阵,投影矩阵 W ∈ R k ∗ d , W \in R^{k * d}, WRkd, 将特征向量投影到语义空间, 得到latent representation S ∈ R k ∗ N , S \in R^{k * N}, SRkN, 假设 k < d k<d k<d,通过一个投影矩阵 W ∗ ∈ R k ∗ d , W^{*} \in R^{k * d}, WRkd, 将语义向量投影到特征空间。 Y = { y 1 , y 2 , … … y s } Y=\left\{y_{1}, y_{2}, \ldots \ldots y_{s}\right\} Y={ y1,y2,ys} 为s个可见类标签的标签向量, Z = { z 1 , z 2 , … … , z u } Z=\left\{z_{1}, z_{2}, \ldots \ldots,z_{u}\right\} Z={ z1,z2,,

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值