怎么证明一个一维函数连续

若想证明一个一维函数 f ( x ) f(x) f(x) x = a x=a x=a 处连续,必须满足下列三个条件:
(1) f ( x ) f(x) f(x) x = a x=a x=a 处有值.
(2) lim ⁡ x → a \lim\limits_{x\rightarrow a} xalim 存在.
(3) lim ⁡ x → a = f ( a ) \lim\limits_{x\rightarrow a}=f(a) xalim=f(a).

第二个条件与第三个条件可以合并。

另外还有一个等价条件:
          f ( x ) f(x) f(x) x = a x=a x=a 处连续,当且仅当对于任意正实数 ϵ > 0 \epsilon>0 ϵ>0,总存在 x ∈ [ a − δ , a + δ ] x\in[a-\delta, a+\delta] x[aδ,a+δ],使得
∣ f ( x ) − f ( a ) ∣ &lt; ϵ |f(x)-f(a)|&lt;\epsilon f(x)f(a)<ϵ

证明过程中,用到这一个的比较多。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心态与习惯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值