若想证明一个一维函数
f
(
x
)
f(x)
f(x) 在
x
=
a
x=a
x=a 处连续,必须满足下列三个条件:
(1)
f
(
x
)
f(x)
f(x) 在
x
=
a
x=a
x=a 处有值.
(2)
lim
x
→
a
\lim\limits_{x\rightarrow a}
x→alim 存在.
(3)
lim
x
→
a
=
f
(
a
)
\lim\limits_{x\rightarrow a}=f(a)
x→alim=f(a).
第二个条件与第三个条件可以合并。
另外还有一个等价条件:
f
(
x
)
f(x)
f(x) 在
x
=
a
x=a
x=a 处连续,当且仅当对于任意正实数
ϵ
>
0
\epsilon>0
ϵ>0,总存在
x
∈
[
a
−
δ
,
a
+
δ
]
x\in[a-\delta, a+\delta]
x∈[a−δ,a+δ],使得
∣
f
(
x
)
−
f
(
a
)
∣
<
ϵ
|f(x)-f(a)|<\epsilon
∣f(x)−f(a)∣<ϵ
证明过程中,用到这一个的比较多。