一致连续(uniform continuous)

一致连续又称均匀连续,它的直白意义是: 若函数 f f f 一致连续,对于定义域内任意两点 x x x y y y,只要 x x x y y y 充分接近, f ( x ) f(x) f(x) f ( y ) f(y) f(y) 也能够充分接近。

另一个用邻域的定义:

  • 对于任意实数 ϵ > 0 \epsilon>0 ϵ>0,总存在实数 δ > 0 \delta>0 δ>0,只要 ∥ x − y ∥ < δ \|x-y\|<\delta xy<δ,都有 ∥ f ( x ) − f ( y ) ∥ < ϵ \|f(x)-f(y)\|<\epsilon f(x)f(y)<ϵ.

海涅-康托尔定理表面:若一个函数在闭区间连续,则该函数也是一致连续的。

连续的直白意义是: 若函数 f f f 连续,对于定义域内任意一点 x x x,都存在一个足够小的邻域, f ( x ) f(x) f(x) 与邻域内的值充分接近。

连续的邻域定义:

  • 对于任意实数 ϵ > 0 \epsilon>0 ϵ>0 与定义域内任一点 x x x,总存在实数 δ > 0 \delta>0 δ>0,只要 ∥ x − y ∥ < δ \|x-y\|<\delta xy<δ,都有 ∥ f ( x ) − f ( y ) ∥ < ϵ \|f(x)-f(y)\|<\epsilon f(x)f(y)<ϵ,其中 y y y x x x 邻域内的任意一点.

可以看出:

  • 一致连续定义中的 δ \delta δ 只与 ϵ \epsilon ϵ 有关
  • 连续定义中的 δ \delta δ ϵ \epsilon ϵ x x x 都有关
  • 一致连续比连续的定义更苛刻,一直连续必然连续,但连续不一定一致连续
  • 一致连续与连续的区分非常抽象不好理解,可以从直白的几何意义去理解二者的区别,例如函数 f ( x ) = 1 / x f(x)=1/x f(x)=1/x,该函数在区间 (0, 1) 连续,但是并不是一致连续:因为选取靠近 0 的两个比较接近的点,它们的值并不充分接近。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心态与习惯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值