一、硬间隔
样本在原始特征空间中线性可分
假设分隔超平面为
此平面要满足两点:
1.可将两类点分开:
使此不等式中等号成立的样本就是支持向量
2.超平面和的间隔r最大化
经推导
综合以上两点
求解满足①②的ω、b即可。(用拉格朗日对偶问题原理)
二、软间隔
样本大体上线性可分,但边界处有少量样本跑到对面去了
对每个样本引入松弛变量ξ
例如某个样本是+1类的,但离超平面距离-0.5,
一、硬间隔
样本在原始特征空间中线性可分
假设分隔超平面为
此平面要满足两点:
1.可将两类点分开:
使此不等式中等号成立的样本就是支持向量
2.超平面和的间隔r最大化
经推导
综合以上两点
求解满足①②的ω、b即可。(用拉格朗日对偶问题原理)
二、软间隔
样本大体上线性可分,但边界处有少量样本跑到对面去了
对每个样本引入松弛变量ξ
例如某个样本是+1类的,但离超平面距离-0.5,