机器学习:SVM

本文详细介绍了支持向量机(SVM)的概念,包括硬间隔和软间隔的定义,如何处理线性不可分问题,以及如何通过核函数解决非线性问题。此外,还讨论了SVM的特点,如在处理中小量样本时的优势,对数据缺失的敏感性,以及选择合适的核函数在应对非线性问题上的挑战。
摘要由CSDN通过智能技术生成

一、硬间隔

样本在原始特征空间中线性可分

假设分隔超平面为

此平面要满足两点:

1.可将两类点分开:


使此不等式中等号成立的样本就是支持向量

2.超平面的间隔r最大化

经推导

综合以上两点


求解满足①②的ω、b即可。(用拉格朗日对偶问题原理)

二、软间隔

样本大体上线性可分,但边界处有少量样本跑到对面去了

对每个样本引入松弛变量ξ

例如某个样本是+1类的,但离超平面距离-0.5,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值