langchain 入门指南(二)- 如何跟大模型对话

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站

本文中,我们会通过一个简单的例子来展示如何使用 langchain 来调用大模型的 chat API(使用 Chat Model)。
这个例子前面也有使用过,但是前面还没有针对里面的内容进行详细的说明。

配置 key 的文档请看 langchain 入门指南(一)- 准备 API KEY

依赖安装

pip install -U langchain-openai

示例

下面的 ChatOpenAI 表示我们要使用的是 Chat Model,顾名思义,这个模型是用来进行对话的,这也是我们最常用的一种模型。

from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage, SystemMessage

chat = ChatOpenAI(
    model="yi-large",
    temperature=0.3,
    max_tokens=200,
    api_key='your key',
    base_url="https://api.lingyiwanwu.com/v1"
)

messages = [
    SystemMessage(content="你是一名精通了 golang 的专家"),
    HumanMessage(content="写一个  golang 的 hello world 程序"),
]

response = chat.invoke(messages)

print(response.content)

ChatOpenAI 说明

使用 ChatOpenAI 类,我们可以调用 chat API。ChatOpenAI 类的构造函数有以下参数:

ChatOpenAI 参数

  • model:模型名称,例如 yi-large(零一万物),gpt-3.5-turbo(OpenAI HK)等。
  • temperature:用于控制生成文本的多样性,值越大,生成的文本越多样化。
  • max_tokens:生成文本的最大长度。(我们的输入和 LLM 的输出都需要消耗 token,所以如果只是测试,可以控制一下输出的 token 数量)
  • api_key:API 密钥(支持多种,不只是 OpenAI 的)。不填写的话,会从环境变量中读取(对应的环境变量是 OPENAI_API_KEY)。
  • base_url:API 的接口地址。不填写的话,会从环境变量中读取(对应的环境变量是 OPENAI_BASE_URL)。
  • timeout:超时时间,单位是秒。
  • max_retries: 最大重试次数。

invoke 方法的参数说明

我们可以看到上面的例子传递了一个 messages 参数,这个参数是一个列表,里面包含了 HumanMessageSystemMessage

在其他地方,我们可能会看到其他形式的参数,它实际上也支持很多种形式,例如:

元组列表
from langchain_openai import ChatOpenAI

chat = ChatOpenAI(
    model="yi-large",
    temperature=0.3,
    max_tokens=200,
    api_key='your key',
    base_url="https://api.lingyiwanwu.com/v1",
)

messages = [
    ('system', '你是一名精通了 golang 的专家'),
    ('human', '写一个  golang 的 hello world 程序')
]

response = chat.invoke(messages)

print(response.content)
BaseMessage 列表
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage, SystemMessage

chat = ChatOpenAI(
    model="yi-large",
    temperature=0.3,
    max_tokens=200,
    api_key='your key',
    base_url="https://api.lingyiwanwu.com/v1",
)

messages = [
    SystemMessage(content="你是一名精通了 golang 的专家"),
    HumanMessage(content="写一个  golang 的 hello world 程序"),
]

response = chat.invoke(messages)

print(response.content)
字符串
from langchain_openai import ChatOpenAI

chat = ChatOpenAI(
    model="yi-large",
    temperature=0.3,
    max_tokens=200,
    api_key='your key',
    base_url="https://api.lingyiwanwu.com/v1",
)

# 这个字符串参数会被转换为 HumanMessage
response = chat.invoke('使用 golang 写一个 hello world 程序')

print(response.content)
字符串列表
from langchain_openai import ChatOpenAI

chat = ChatOpenAI(
    model="yi-large",
    temperature=0.3,
    max_tokens=200,
    api_key='your key',
    base_url="https://api.lingyiwanwu.com/v1",
)

messages = [
    "你是一名精通了 golang 的专家",
    "写一个  golang 的 hello world 程序",
]

response = chat.invoke(messages)

print(response.content)

invoke 方法的返回值

上面是直接打印了返回值的 content 属性,实际上返回值中包含了其他一些有用的信息:

{
  "lc": 1,
  "type": "constructor",
  "id": [
    "langchain",
    "schema",
    "messages",
    "AIMessage"
  ],
  "kwargs": {
    "content": "<...省略...>",
    "response_metadata": {
      "token_usage": {
        "completion_tokens": 200,
        "prompt_tokens": 35,
        "total_tokens": 235
      },
      "model_name": "yi-large",
      "system_fingerprint": null,
      "finish_reason": "length",
      "logprobs": null
    },
    "type": "ai",
    "id": "run-29131a4f-e792-4c9e-8cf5-490afed94176-0",
    "usage_metadata": {
      "input_tokens": 35,
      "output_tokens": 200,
      "total_tokens": 235
    },
    "tool_calls": [],
    "invalid_tool_calls": []
  }
}

一些字段说明:

  • completion_tokens/output_tokens 是生成的文本的 token 数量。
  • prompt_tokens/input_tokens 是输入的 token 数量。
  • total_tokens 是单次请求总的 token 数量。

在实际的应用中,我们需要注意使用的 token 的数量,防止消耗太多的 token,因为 token 是要花钱来购买的。
如果我们是为其他人提供服务,可能就需要针对不同的用户来统计 token 的使用情况,以便计费。

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白如意i

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值