参考博客:https://blog.csdn.net/jesse_mx/article/details/55212179?utm_source=itdadao&utm_medium=referral
1. 概述
改论文中,作者总的有两个贡献:
一,将原始的SSD中用到的骨干网络vgg-16换为resnet-101,目的是为了使特征提取能力更强;
二,检测网络中,在原有SSD后添加的几个层之后加入额外的反卷积层,目的是使网络可以提取到更丰富的上下文信息。
2. 网络模型
在此,详细讲解反卷积模块 。
正常情况下,反卷积模型在编码和解码阶段应该包含对称的层。但论文中作者并没有用到对称性,而是将反卷积模块设置的相对较浅,原因有两个:一,检测是视觉的基本任务,可能需要为下游任务提