anything-llm AnythingLLM 您一直在寻找的全方位AI应用程序

AI MCP 系列

AgentGPT-01-入门介绍

Browser-use 是连接你的AI代理与浏览器的最简单方式

AI MCP(大模型上下文)-01-入门介绍

AI MCP(大模型上下文)-02-awesome-mcp-servers 精选的 MCP 服务器

AI MCP(大模型上下文)-03-open webui 介绍 是一个可扩展、功能丰富且用户友好的本地部署 AI 平台,支持完全离线运行。

AI MCP(大模型上下文)-04-n8n 为技术团队打造的安全工作流自动化平台

AI MCP(大模型上下文)-05-anything-llm AnythingLLM 您一直在寻找的全方位AI应用程序

AI MCP(大模型上下文)-06-maxkb 强大易用的企业级 AI 助手

AI MCP(大模型上下文)-07-dify 入门介绍

AI MCP(大模型上下文)-08-分享一些好用的 Dify DSL 工作流程

AI MCP(大模型上下文)-09-基于Dify自主创建的AI应用DSL工作流

AI MCP(大模型上下文)-10-Activepieces 一个开源的 Zapier 替代方案

AI MCP(大模型上下文)-11-微软 Playwright MCP server

AI MCP(大模型上下文)-12-AWS MCP

AI MCP(大模型上下文)-13-github MCP

AnythingLLM 您一直在寻找的全方位AI应用程序。

与您的文档聊天,使用AI代理,高度可配置,多用户,无需繁琐的设置。

适用于桌面(Mac、Windows和Linux)的AnythingLLM!

这是一个全栈应用程序,可以将任何文档、资源(如网址链接、音频、视频)或内容片段转换为上下文,以便任何大语言模型(LLM)在聊天期间作为参考使用。此应用程序允许您选择使用哪个LLM或向量数据库,同时支持多用户管理并设置不同权限。

产品概览

AnythingLLM是一个全栈应用程序,您可以使用现成的商业大语言模型或流行的开源大语言模型,再结合向量数据库解决方案构建一个私有ChatGPT,不再受制于人:您可以本地运行,也可以远程托管,并能够与您提供的任何文档智能聊天。

AnythingLLM将您的文档划分为称为workspaces (工作区)的对象。

工作区的功能类似于线程,同时增加了文档的容器化。工作区可以共享文档,但工作区之间的内容不会互相干扰或污染,因此您可以保持每个工作区的上下文清晰。

AnythingLLM的一些酷炫特性

  • 🆕 自定义AI代理
  • 🆕 无代码AI代理构建器
  • 🖼️ 多用户实例支持和权限管理(支持封闭源和开源LLM!)
  • 👤 多用户实例支持和权限管理 仅限Docker版本
  • 🦾 工作区内的智能体Agent(浏览网页、运行代码等)
  • 💬 为您的网站定制的可嵌入聊天窗口
  • 📖 支持多种文档类型(PDF、TXT、DOCX等)
  • 通过简单的用户界面管理向量数据库中的文档
  • 两种对话模式:聊天查询。聊天模式保留先前的对话记录。查询模式则是针对您的文档做简单问答
  • 聊天中会提供所引用的相应文档内容
  • 100%云部署就绪。
  • “部署你自己的LLM模型”。
  • 管理超大文档时高效、低耗。只需要一次就可以嵌入(Embedding)一个庞大的文档或文字记录。比其他文档聊天机器人解决方案节省90%的成本。
  • 全套的开发人员API,用于自定义集成!

支持的LLM、嵌入模型、转录模型和向量数据库

支持的LLM:

支持的嵌入模型:

支持的转录模型:

TTS (文本转语音) 支持:

STT (语音转文本) 支持:

  • 浏览器内置(默认)

支持的向量数据库:

技术概览

这个单库由三个主要部分组成:

  • frontend: 一个 viteJS + React 前端,您可以运行它来轻松创建和管理LLM可以使用的所有内容。
  • server: 一个 NodeJS express 服务器,用于处理所有交互并进行所有向量数据库管理和 LLM 交互。
  • docker: Docker 指令和构建过程 + 从源代码构建的信息。
  • collector: NodeJS express 服务器,用于从UI处理和解析文档。

🛳 自托管

Mintplex Labs和社区维护了许多部署方法、脚本和模板,您可以使用它们在本地运行AnythingLLM。请参阅下面的表格,了解如何在您喜欢的环境上部署,或自动部署。

DockerAWSGCPDigital OceanRender.com
[![在 Docker 上部署][docker-btn]][docker-deploy][![在 AWS 上部署][aws-btn]][aws-deploy][![在 GCP 上部署][gcp-btn]][gcp-deploy][![在DigitalOcean上部署][do-btn]][do-deploy][![在 Render.com 上部署][render-btn]][render-deploy]
Railway
[![在Railway上部署][railway-btn]][railway-deploy]

其他方案:不使用Docker配置AnythingLLM实例 →

如何设置开发环境

  • yarn setup 填充每个应用程序部分所需的 .env 文件(从仓库的根目录)。
    • 在开始下一步之前,先填写这些信息server/.env.development,不然代码无法正常执行。
  • yarn dev:server 在本地启动服务器(从仓库的根目录)。
  • yarn dev:frontend 在本地启动前端(从仓库的根目录)。
  • yarn dev:collector 然后运行文档收集器(从仓库的根目录)。
### anything-llm在Ubuntu上的安装 #### 准备工作 确保服务器环境已经准备好,特别是确认操作系统的版本和所需软件包。对于本次情况,服务器的操作系统为 Ubuntu 22.04.4 LTS[^1]。 #### 安装依赖项 为了顺利部署anything-llm,在开始之前需先更新现有的软件包并安装必要的依赖库。这可以通过执行如下命令完成: ```bash sudo apt-y sudo apt-get install -y python3-pip git curl wget ``` #### 创建虚拟环境(推荐) 创建一个新的Python虚拟环境有助于隔离项目所需的特定版本的库和其他项目的冲突。通过下面的指令可以轻松建立一个新环境: ```bash python3 -m venv llm-env source llm-env/bin/activate pip install --upgrade pip setuptools wheel ``` #### 获取anything-llm源码 假设already有官方GitHub仓库或者其他托管平台提供了该模型的开源实现,则可以直接克隆仓库到本地: ```bash git clone https://github.com/user/anything-llm.git cd anything-llm ``` 请注意替换上述URL为你实际要使用的存储位置链接。 #### 安装Python依赖 进入项目目录后,通常会有一个`requirements.txt`文件列出了所有必需的Python包。使用pip工具按照这个清单自动下载并配置这些依赖关系: ```bash pip install -r requirements.txt ``` 如果遇到CUDA相关错误,应确保所用的CUDA和cuDNN版本与PyTorch版本相匹配,并且保持显卡驱动处于最新状态[^2]。 #### 配置模型参数 根据具体需求调整配置文件中的设置选项,比如指定预训练权重的位置、定义推理过程中的一些超参等。这部分的具体指导建议参照官方文档或README.md内的说明部分。 #### 运行测试样例 大多数情况下,开发者会在repository里提供一些简单的脚本来帮助新手快速启动服务或是验证安装是否成功。尝试运行其中一个例子看看能否得到预期的结果: ```bash python run_example.py ``` 如果有任何问题发生,如模型加载失败,请核查模型文件路径准确性、完整性以及访问权限;必要时利用Linux下的`chmod`命令赋予适当权限给目标文件夹及其子资源。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值