十、AI学习笔记|残差网络ResNet

本文探讨了残差网络(ResNet)如何通过跳跃连接解决深度神经网络中的梯度消失和爆炸问题。残差块允许激活值直接传递,避免训练难题。即使层数增加,ResNet仍能保持训练成本下降,优于普通网络。
摘要由CSDN通过智能技术生成

1、残差网络

由于梯度爆炸和梯度消失的问题,导致越深的神经网络越难训练好,所以即使有足够的计算力和数据,也难以得到很深很深的优秀神经网络。

残差网络:使用跳跃连接,用它来将前面的激活值跳过中间的网络层,而直接传递到更后面的网络层去,由此来避免梯度爆炸和梯度消失。使用此种跳跃连接构建出来的网络,称之为残差网络。

残差网络由一个个的残差块组成的。

(1)残差块

如下两个神经网络层

如果发生梯度爆炸(梯度消失),激活值会越来越大(越来越小),为了解决这种问题,可以将

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值