1、残差网络
由于梯度爆炸和梯度消失的问题,导致越深的神经网络越难训练好,所以即使有足够的计算力和数据,也难以得到很深很深的优秀神经网络。
残差网络:使用跳跃连接,用它来将前面的激活值跳过中间的网络层,而直接传递到更后面的网络层去,由此来避免梯度爆炸和梯度消失。使用此种跳跃连接构建出来的网络,称之为残差网络。
残差网络由一个个的残差块组成的。
(1)残差块:
如下两个神经网络层


如果发生梯度爆炸(梯度消失),激活值会越来越大(越来越小),为了解决这种问题,可以将
本文探讨了残差网络(ResNet)如何通过跳跃连接解决深度神经网络中的梯度消失和爆炸问题。残差块允许激活值直接传递,避免训练难题。即使层数增加,ResNet仍能保持训练成本下降,优于普通网络。
由于梯度爆炸和梯度消失的问题,导致越深的神经网络越难训练好,所以即使有足够的计算力和数据,也难以得到很深很深的优秀神经网络。
残差网络:使用跳跃连接,用它来将前面的激活值跳过中间的网络层,而直接传递到更后面的网络层去,由此来避免梯度爆炸和梯度消失。使用此种跳跃连接构建出来的网络,称之为残差网络。
残差网络由一个个的残差块组成的。
(1)残差块:
如下两个神经网络层


如果发生梯度爆炸(梯度消失),激活值会越来越大(越来越小),为了解决这种问题,可以将
1155
350

被折叠的 条评论
为什么被折叠?