4、神经网络 - 模糊系统混合技术在故障诊断与知识集成中的应用

神经网络 - 模糊系统混合技术在故障诊断与知识集成中的应用

1. 故障诊断中NN - FS混合方法

在故障诊断领域,神经网络(NN)与模糊系统(FS)的混合技术(NN - FS HIS)展现出了独特的优势,但也面临着一些挑战。

1.1 模型训练与结构问题

在某些情况下,模型的结构可能并不合适,训练也未完全完成。例如,一个具有64条规则的模型,经过适当且完整的训练后,应具有重叠的隶属函数和许多具有相似结果的输入区域。但这需要对模型进行后处理以简化,然而这一任务比先预测模型的正确结构,再进行训练更为复杂。

1.2 基于神经模糊的残差评估

在诊断系统的残差生成部分,用户应更关注NN - FS HIS模型的准确性,同时也期望模型具有可解释性,如TSK NN - FS HIS模型。而在评估部分,故障分类器以人类可理解的术语(如分类规则)呈现的透明度或可解释性更为重要。

NN - FS HIS故障分类的主要问题是如何获得一个可解释的模糊分类器,它应具有少量有意义的模糊规则和输入/输出变量的语言规则。Mamdani模糊模型的NN - FS HIS网络结构是评估残差和进行故障隔离的合适工具,因为规则的结果包含语言值,比TSK模糊模型中的线性模型更易读。不过,为了获得分类器的可解释性,会牺牲一定的分类精度。

为了训练NN - FS HIS网络(Mamdani NFNs)以隔离故障,每种故障使用了150个模式。网络对残差值的决策与已知的故障行为相关联。为了获得可读的故障分类器,使用了NEFCLASS神经模糊分类器,它允许用户以简单交互的方式获得具有所需精度和透明度的FS故障分类器。

以下是模拟

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值