基于加注意力机制(CNN-GRU-Attention)的时间序列预测程序

基于加注意力机制(CNN-GRU-Attention)的时间序列预测程序,预测精度很高。
可用于做风电功率预测,电力负荷预测等等
标记注释清楚,可直接换数据运行。
代码实现训练与测试精度分析。

引言: 时间序列预测一直是很多领域中的重要问题,如风电功率预测、电力负荷预测等。在过去的几年中,深度学习技术在时间序列预测上取得了显著的进展。本文旨在介绍基于加注意力机制(CNN-GRU-Attention)的时间序列预测程序,该程序能够实现高精度的时间序列预测,并且可用于风电功率预测、电力负荷预测等应用。本文将从模型的结构、标记注释、数据运行、代码实现训练与测试精度分析等方面进行详细介绍。

一、模型结构 本文使用的模型是基于加注意力机制(CNN-GRU-Attention)的时间序列预测程序。该模型的结构包括三个主要的部分:卷积神经网络(CNN)、门控循环单元(GRU)、以及加注意力机制。整个模型的结构如图1所示。

在模型结构中,CNN用于提取时间序列数据的特征,GRU则能够在时间序列上进行长短期记忆,并在此基础上预测未来的时间序列。加注意力机制则是在时间序列预测中非常重要的一部分,它能够让模型更加聚焦于重要的时间序列数据,提高预测的精度。

二、标记注释 标记

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值