✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
负荷预测在电网运行中至关重要,准确的负荷预测可以提高电网的稳定性和经济性。本文提出了一种基于注意力机制卷积神经网络结合门控循环单元(Attention-CNN-GRU)的负荷回归预测模型。该模型利用卷积神经网络提取负荷序列中的局部特征,并通过注意力机制赋予不同的特征权重,突出重要特征。同时,模型采用门控循环单元处理序列信息,捕捉负荷序列中的长期依赖关系。实验结果表明,该模型在多个数据集上取得了优异的预测性能,优于传统方法和现有深度学习模型。
引言
随着电网规模的不断扩大和新能源的快速发展,电网负荷预测变得越来越重要。准确的负荷预测可以为电网调度、电厂运行和用户侧需求响应提供决策支持,从而提高电网的稳定性和经济性。
近年来,深度学习技术在负荷预测领域得到了广泛应用,取得了显著的成果。卷积神经网络(CNN)和门控循环单元(GRU)是两种常用的深度学习模型。CNN擅长提取局部特征,而GRU擅长处理序列信息。
本文提出了一种基于注意力机制卷积神经网络结合门控循环单元(Attention-CNN-GRU)的负荷回归预测模型。该模型将CNN和GRU的优点结合起来,利用CNN提取负荷序列中的局部特征,并通过注意力机制赋予不同的特征权重,突出重要特征。同时,模型采用GRU处理序列信息,捕捉负荷序列中的长期依赖关系。
模型结构
Attention-CNN-GRU模型的结构如图1所示。该模型主要包括以下几个部分:
-
**卷积层:**提取负荷序列中的局部特征。
-
**注意力层:**赋予不同的特征权重,突出重要特征。
-
**GRU层:**处理序列信息,捕捉负荷序列中的长期依赖关系。
-
**全连接层:**输出负荷预测值。
注意力机制
注意力机制是一种赋予不同特征权重的技术,可以突出重要特征。本文采用了一种基于自注意力机制的注意力层。自注意力机制计算每个特征与所有其他特征之间的相关性,并根据相关性赋予不同的特征权重。
自注意力机制的计算公式如下:
A = softmax(Q * K^T)
其中,Q和K是查询矩阵和键矩阵,A是注意力矩阵。
训练
模型的训练目标是最小化预测值与实际值之间的均方误差(MSE)。训练过程采用反向传播算法,通过梯度下降更新模型参数。
实验
实验结果表明,Attention-CNN-GRU模型在所有数据集上都取得了优异的预测性能。与传统方法和现有深度学习模型相比,Attention-CNN-GRU模型的预测误差更低,预测精度更高。
结论
本文提出了一种基于注意力机制卷积神经网络结合门控循环单元(Attention-CNN-GRU)的负荷回归预测模型。该模型利用CNN提取负荷序列中的局部特征,并通过注意力机制赋予不同的特征权重,突出重要特征。同时,模型采用GRU处理序列信息,捕捉负荷序列中的长期依赖关系。实验结果表明,该模型在多个数据集上取得了优异的预测性能,优于传统方法和现有深度学习模型。
Attention-CNN-GRU模型具有以下优点:
-
能够提取负荷序列中的局部特征和长期依赖关系。
-
利用注意力机制突出重要特征,提高预测精度。
-
在多个数据集上取得了优异的预测性能。
该模型可以为电网调度、电厂运行和用户侧需求响应提供准确的负荷预测,从而提高电网的稳定性和经济性。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
[1] 林靖皓,秦亮曦,苏永秀,等.基于自注意力机制的双向门控循环单元和卷积神经网络的芒果产量预测[J].计算机应用, 2020, 40(S01):5.DOI:10.11772/j.issn.1001-9081.2019091537.
[2] 赵广谦.基于卷积神经网络和双向GRU的滚动轴承剩余寿命预测方法研究[J].[2024-03-13].
[3] 王博文,王景升,王统一,等.基于卷积神经网络与门控循环单元的交通流预测模型[J].重庆大学学报, 2023, 46(8):132-140.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类