Any2Policy: Learning Visuomotor Policy with Any-Modality(类似AnyGPT)

发表时间:NeurIPS 2024

论文链接:https://readpaper.com/pdf-annotate/note?pdfId=2598959255168534016&noteId=2598960522854466816

作者单位:Midea Group

Motivation:Current robotic learning methodologies often focus on single-modal task specification and observation, thereby limiting their ability to process rich multi-modal information.(从多模态的角度切入

Any2Policy 框架旨在处理多模态输入,分别在指令和观察级别单独或串联容纳它们。

我们设计了嵌入式对齐模块,旨在同步不同模态之间的特征,以及指令和观察,确保不同输入类型的无缝和有效的集成。

解决方法:为了解决这一限制,我们提出了一个名为 Any-to-Policy Embodied Agents 的端到端通用多模态系统。该系统使机器人能够使用各种模式处理任务,无论是在文本图像、音频图像、文本点云等组合中。

实现方式:我们的创新方法包括训练一个通用模态网络,该网络适应各种输入,并与策略网络连接以进行有效控制。

In summary, our contributions are the follows:

• We introduce any-to-policy models that enable a unified embodied agent to process various combinations of modalities, effectively facilitating instruction and perception of the world.

• We present novel embodied alignment learning techniques designed to seamlessly align instructions and observations, enhancing both the effectiveness and efficiency of policy learning.

• We offer a multi-modal dataset tailored for robotics, encompassing 30 distinct tasks. This dataset covers a wide spectrum of modalities in both instruction and observation.

实验:我们组装了一个包含30个机器人任务的综合真实数据集。

a real-world setting using our own collected dataset。

Simulation Evaluation: Franka Kitchen [ 92] uses text-image and ManiSkill2.

结论该框架有效地处理并响应机器人任务的多模态数据。整个框架与其多模态数据集相结合,代表了体现 AI 领域的重大进步。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ming_Chens

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值