Any2Policy: Learning Visuomotor Policy with Any-Modality(类似AnyGPT)

发表时间:NeurIPS 2024

论文链接:https://readpaper.com/pdf-annotate/note?pdfId=2598959255168534016&noteId=2598960522854466816

作者单位:Midea Group

Motivation:Current robotic learning methodologies often focus on single-modal task specification and observation, thereby limiting their ability to process rich multi-modal information.(从多模态的角度切入

Any2Policy 框架旨在处理多模态输入,分别在指令和观察级别单独或串联容纳它们。

我们设计了嵌入式对齐模块,旨在同步不同模态之间的特征,以及指令和观察,确保不同输入类型的无缝和有效的集成。

解决方法:为了解决这一限制,我们提出了一个名为 Any-to-Policy Embodied Agents 的端到端通用多模态系统。该系统使机器人能够使用各种模式处理任务,无论是在文本图像、音频图像、文本点云等组合中。

实现方式:我们的创新方法包括训练一个通用模态网络,该网络适应各种输入,并与策略网络连接以进行有效控制。

In summary, our contributions are the follows:

• We introduce any-to-policy models that enable a unified embodied agent to process various combinations of modalities, effectively facilitating instruction and perception of the world.

• We present novel embodied alignment learning techniques designed to seamlessly align instructions and observations, enhancing both the effectiveness and efficiency of policy learning.

• We offer a multi-modal dataset tailored for robotics, encompassing 30 distinct tasks. This dataset covers a wide spectrum of modalities in both instruction and observation.

实验:我们组装了一个包含30个机器人任务的综合真实数据集。

a real-world setting using our own collected dataset。

Simulation Evaluation: Franka Kitchen [ 92] uses text-image and ManiSkill2.

结论该框架有效地处理并响应机器人任务的多模态数据。整个框架与其多模态数据集相结合,代表了体现 AI 领域的重大进步。

### 如何复现论文 'Diffusion Policy: Visuomotor Policy Learning via Action Diffusion' #### 方法概述 该方法的核心在于通过动作扩散模型(Action Diffusion Model)学习视觉运动策略。具体来说,它结合了显式策略(Explicit Policy)和隐式策略(Implicit Policy),并通过扩散过程优化动作序列的学习效果[^1]。 #### 数据准备 为了复现此方法,需准备好高质量的动作数据集以及对应的环境模拟器。这些数据通常来源于专家演示或真实世界的机器人交互记录。Wang等人提到的数据预处理步骤对于提升模型性能至关重要[^3]。 #### 模型架构设计 模型主要由两部分组成:一是基于扩散机制的动作生成模块;二是用于评估生成动作质量的价值网络或者奖励函数。其中,动作生成模块可以采用条件变分自编码器或其他适合的时间序列建模技术实现[^2]。 以下是简化版的Python伪代码示例: ```python import torch from diffusers import UNet2DModel class DiffusionPolicy(torch.nn.Module): def __init__(self, input_dim, output_dim, hidden_size=128): super(DiffusionPolicy, self).__init__() # 定义UNet结构作为核心组件 self.unet = UNet2DModel( sample_size=input_dim, in_channels=hidden_size, out_channels=output_dim, layers_per_block=2, block_out_channels=(hidden_size, hidden_size*2), down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D") ) def forward(self, x, timesteps=None): return self.unet(x, timesteps).sample def train_model(model, dataloader, optimizer, loss_fn, epochs=10): model.train() for epoch in range(epochs): total_loss = 0 for batch_data in dataloader: inputs, targets = batch_data noise = torch.randn_like(inputs) noisy_inputs = add_noise_to_signal(inputs, noise, timestep_schedule()) predicted_noise = model(noisy_inputs, timesteps=timestep_schedule()) loss = loss_fn(predicted_noise, noise) optimizer.zero_grad() loss.backward() optimizer.step() total_loss += loss.item() avg_loss = total_loss / len(dataloader) print(f"Epoch {epoch+1}/{epochs}, Loss: {avg_loss:.4f}") ``` 上述代码片段展示了如何构建一个简单的扩散政策框架,并提供了训练循环的基础逻辑。 #### 实验设置与超参数调整 实验过程中需要注意的关键点包括但不限于时间步数的选择、噪声水平控制以及批量大小等因素的影响分析。此外,在实际应用中可能还需要针对特定任务微调一些高级配置选项。 #### 结果验证与改进方向探索 完成初步复现之后,可以通过对比不同条件下得到的结果来进一步完善算法表现。例如尝试引入更多的先验知识指导扩散过程,或是研究更高效的采样方案降低计算成本等。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ming_Chens

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值