【动态建模与分析】拉普拉斯变换笔记

本文探讨了如何利用拉普拉斯变换简化线性微分方程求解过程,涉及微分方程到代数方程的转换、卷积运算到乘法运算的对应,以及收敛域和逆变换的计算实例。重点介绍了如何通过Laplace变换处理系统并给出实数和复数逆变换的例子,以及极点在其中的作用。
摘要由CSDN通过智能技术生成

1.拉普拉斯变换

 问:分析电流i的变化。———→求解微分方程。    (卷积  *  )

拉普拉斯变换--[微分方程→代数方程,卷积运算→乘法运算]

L[f(t)]=F(s)=\int_{0}^{\infty }f(t)e^{-st}dt

(时间函数)   ——→    

傅里叶变换  (与Laplace的关系)

2.收敛域和逆变换

 

 1.收敛域ROC

例   收敛域为σ<-a的部分

 其他例子可以自己动手,算出其收敛域。

2.逆变换ILT

————————————

 从微分方程入手分析系统较为复杂

引入拉氏变换,可以简化该过程。

————————————

用Laplace求解线性微分方程,三步:

(第三步将结果从s域转化到时域—用到了 Laplace的逆变换)

 

逆变换例题:①实数②复数

 (s=-4与s=-1为传递函数的极点)

 (解和极点密不可分)

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值