深度学习工程实践Tips(长期更新) 1. 训练阶段加速 * 使用混合精度加速训练 推荐使用NVIDIA的APEX进行训练加速,在2060S显卡上,大约可以获得一倍的综合速度提升(显存使用减少,可以适当增加batchsize, 提高速度)。精度下降几乎察觉不到。APEX保存和加载的模型参数仍然是float32类型的,所以不用担心预训练模型重用的问题。使用起来也十分简单:h...
AI常用数据集下载 AI常用数据集下载:<持续更新>VOC 数据集下载:链接:https://pan.baidu.com/s/1zkqg62qKjj1rauAnvBUnXQ提取码:s6lhCamVid数据集下载:链接:https://pan.baidu.com/s/1W5zd1KBsiFltVd8f2ighDg提取码:spc7CityScape数据集下载:...
NMS极慢原因 近几天做了一个训练。以往都是使用迁移训练的方式,主干网络都是采用预训练的参数做初始化。但这次使用的是自己改进的网络。所以采用随机初始化开始训练。训练速度都还可以。但是在测试中间过程中,NMS(算法是Soft NMS)计算速度非常慢。(我的电脑2*1080Ti, 一般batch= 32, 单GPU的测试情况下,NMS只用0.008s)。而第一轮测试的时候,NMS计算居然到了0.18s,严重影响了...
Ubuntu 18.04下 安装pytorch 1. 安装CUDA 包括显卡驱动,CUDA, CUDNN 请参考博客 https://mp.csdn.net/postedit/84586319 2. 安装 Anaconda 使用命令行下载安装文件,并安装curl -O https://repo.anaconda.com/archive/Anaconda3-5.2.0-...
ubuntu18.04: nvidia drivers + cuda9.2 + cudnn installation 1. install the PPA$ sudo add-apt-repository ppa:graphics-drivers/ppa$ sudo apt-get update2. install the driver and libs from the PPA$ sudo apt-get install nvidia-driver-396 libnvidia-compute-396 ...
opencv_traincascade训练分类器 1. 训练分类器简介有如下几个需要考虑的地方:*准备正样本:越多越好(线缆项目,需要大约1000个样本较为合理)*准备负样本:分为两个类别,工作场景负样本,非工作场景负样本。两者比重约为1:2*特征选择:本次选择LBP特征,主要考虑因素是速度。*分类器选择:ADB2重要步骤:2.1 准备正样本:工具:*labelImg:在图像中进行目标定位和打标 *cvt_xml:将xml文件描述转换为...
opencv_createsamples的用法 原文地址:https://blog.csdn.net/sssanton/article/details/52268630近研究OPENCV的分类器,大概试了一下自带的人脸识别例程,然后想到自己去训练其他物品识别的分类器,需要用到里面的opencv_createsamples创建样本和opencv_traincascade训练级联分类器。网上搜了不少的文章,又看了opencv官网的训练器生成教程,还...
Recall(召回率);Precision(准确率);F1-Meature(综合评价指标);true positives;false positives;false negatives.. 原文: http://blog.csdn.net/t710smgtwoshima/article/details/8215037Recall(召回率);Precision(准确率);F1-Meature(综合评价指标); 在信息检索(如搜索引擎)、自然语言处理和检测分类中经常会使用这些参数,介于语言翻译上的原因理解难免出现误差,下面介绍下自己对他们的理解。 首先来个
\r \n \r\n的区别 是换行,英文是New line,表示使光标到行首\r是回车,英文是Carriage return,表示使光标下移一格\r表示回车换行我们在平时使用电脑时,已经习惯了回车和换行一次搞定,敲一个回车键,即是回车,又是换行。 1、 软回车:在Windows 中表示换行且回到下一行的最开始位置。相当于Mac OS 里的 \r 的效果。在Linux、unix 中只
ubuntu 搜狗输入法不能输入中文 现象: 可以切换输入法,但是搜狗输入法下输入汉字,没有显示汉字,只有拼音解决: 删除配置文件,重启搜狗 ubuntu下搜狗的配置文件在 ~/.config下的3个文件夹里: SogouPY、SogouPY.users、sogou-qimpanel 删除这3个文件夹,然后重启搜狗
google gflags 使用2 转载: http://www.leoox.com/?p=275有了上文《用Google的gflags优雅的解析命令行参数》到位的前戏,已经知道gflags是何方“尤物”了。接下来就该深入一下了。 支持的参数类型gflags支持的类型有bool,int32,int64,uint64,double和string。可以说这些基本类型大体上满足了我们的需求。DEFINE_
google gflags 使用1 转载: http://www.leoox.com/?p=270写了这么多年的Linux下C/C++代码,一直使用getopt_long来解析命令行参数,同时定义一个全局的struct来保存各个命令行参数的值。虽然用得比较“繁琐”,但也安于现状。最近突然发现了Google早在多年前就开源了一个解析命令行参数的“神器”gflags。赶紧来爽一把。 安装1、去官网下载一个最新的版本
Google Protocol Buffer 转摘 https://www.ibm.com/developerworks/cn/linux/l-cn-gpb/index.html简介什么是 Google Protocol Buffer? 假如您在网上搜索,应该会得到类似这样的文字介绍:Google Protocol Buffer( 简称 Protobuf) 是 Google 公司内部的混合语言数据标准,目前已经正在使用的有超过