经典控制算法(二)离散时间PID控制器&PID算法实现

本文介绍了PID控制器在计算机处理中的离散化过程,包括连续时间PID控制器模型的离散化公式,以及从位置式到增量式PID控制器的数学推导,以优化算法效率。着重讨论了两种控制器的实现方式和计算复杂度的降低。
摘要由CSDN通过智能技术生成

PID控制器离散化

因为计算机处理为数字处理,反馈环节采样和作用环节处理并非理想连续而是离散的。所以需要对连续时间的PID控制器模型进行离散化处理,连续时间PID控制器:
u ( t ) = K p e ( t ) + K i ∫ 0 t e ( τ ) d t + K d d e ( t ) d t u(t)=K_pe(t)+K_i\int_0^te(τ)dt+K_d\frac{de(t)}{dt} u(t)=Kpe(t)+Ki0te(τ)dt+Kddtde(t)

控制器离散化:
u ( n ) = K p e ( n ) + K i ∑ i = 0 n e ( i ) + K d ( e ( n ) − e ( n − 1 ) ) u(n)=K_pe(n)+K_i\sum_{i=0}^{n}e(i)+K_d(e(n)-e(n-1)) u(n)=Kpe(n)+Kii=0ne(i)+Kd(e(n)e(n1))

n:采样次数

位置式PID算法实现

PID控制器离散化直接算法实现即为位置式PID。

typedef struct {
    float target_val;     //目标值
    float err;            //定义当前偏差值
    float err_last;       //定义上一个偏差值
    float Kp, Ki, Kd;     //定义比例、积分、微分系数
    float integral;       //积分值
    float control_val;    //控制值
} PID_Typedef;

float PID_Process(PID_Typedef *pid_obj,float current_val){
    pid_obj->err=pid_obj->target_val-current_val;
    pid_obj->integral+=pid_obj->err;

    pid_obj->control_val = pid_obj->Kp*pid_obj->err
                        + pid_obj->Ki*pid_obj->integral
                        + pid_obj->Kd*(pid_obj->err-pid_obj->err_last);
    
    pid_obj->err_last=pid_obj->err;
    
    return pid_obj->control_val;
}

由传统位置式PID控制器到增量式PID控制器的数学推导

传统位置式PID控制存在积分累加环节,计算量相对较大,为了优化算法效率,将每一次控制量拆分,只计算控制量的增量,这就是增量式PID控制器。

将n=(n-1)代入至离散化PID公式,即:
u ( n − 1 ) = K p e ( n − 1 ) + K i ∑ i = 0 n − 1 e ( i ) + K d ( e ( n − 1 ) − e ( n − 2 ) ) u(n-1)=K_pe(n-1)+K_i\sum_{i=0}^{n-1}e(i)+K_d(e(n-1)-e(n-2)) u(n1)=Kpe(n1)+Kii=0n1e(i)+Kd(e(n1)e(n2))

增量式PID控制器 Δ u = u ( n ) − u ( n − 1 ) \Delta u=u(n)-u(n-1) Δu=u(n)u(n1)即:
Δ u = K p ( e ( n ) − e ( n − 1 ) ) + K i e ( n ) + K d ( e ( n ) − 2 e ( n − 1 ) + e ( n − 2 ) ) \Delta u=K_p(e(n)-e(n-1))+K_ie(n)+K_d(e(n)-2e(n-1)+e(n-2)) Δu=Kp(e(n)e(n1))+Kie(n)+Kd(e(n)2e(n1)+e(n2))

所以得:
u ( n ) = Δ u + u ( n − 1 ) u(n)=\Delta u+u(n-1) u(n)=Δu+u(n1)

由上式可知,增量式PID控制只与最近的三次采样的误差有关,计算复杂度由O(n)变为O(1)。

增量式PID算法实现

typedef struct {
    float target_val;     //目标值
    float err;            //定义当前偏差值
    float err_last;       //定义上一个偏差值
    float err_before_last;//定义上上一个偏差值
    float Kp, Ki, Kd;     //定义比例、积分、微分系数
    float control_val;    //控制值
} PID_Typedef;

float PID_Process(PID_Typedef *pid_obj,float current_val){
    pid_obj->err=pid_obj->target_val-current_val;
    
    float delta_val = pid_obj->Kp*(pid_obj->err-pid_obj->err_last)
                    +pid_obj->Ki*pid_obj->err
                    +pid_obj->Kd*(pid_obj->err-2*pid_obj->err_last+pid_obj->err_before_last);
    pid_obj->control_val+=delta_val;
    
    pid_obj->err_before_last=pid_obj->err_last;
    pid_obj->err_last=pid_obj->err;
    
    return pid_obj->control_val;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值