复变函数论6-留数理论及其应用2-1-用留数定理计算实积分4:计算积分路径上有奇点的积分

本文介绍了复变函数论中留数理论的应用,特别是如何利用留数定理来计算含有奇点的实积分。通过引理6.3,讨论了当函数在实轴上有一阶极点时,如何处理积分路径,并通过举例说明了如何求解积分问题,如计算积分∫0+∞xsinx dx。最终,通过极限过程得到该积分的柯西主值为2π。
摘要由CSDN通过智能技术生成

在数学分析中, 对于反常积分, 也可以类似地定义它的柯西主值. 又在定理 6.8中假定 Q ( z ) Q(z) Q(z) 无实零点, 现在我们可以把条件放宽一点, 容许 Q ( z ) Q(z) Q(z)有有限多个一阶零点,即允许函数 f ( z ) = P ( z ) Q ( z ) e i m z f(z)=\frac{P(z)}{Q(z)} \mathrm{e}^{\mathrm{i} m z} f(z)=Q(z)P(z)eimz在实轴上有有限个一阶极点. 为了估计挖去这种极点后沿辅助路径的积分,除了上面两个引理外, 再引进一个与引理 6.1 相似的引理.

引理 6.3

f ( z ) f(z) f(z) 沿圆弧 S r : z − a = r e i θ ( θ 1 ⩽ θ ⩽ θ 2 , r S_{r}: z-a=r \mathrm{e}^{i \theta}\left(\theta_{1} \leqslant \theta \leqslant \theta_{2}, r\right. Sr:za=reiθ(θ1θθ2,r充分小 ) ) ) 上连续, 且

lim ⁡ x → 0 ( z − a ) f ( z ) = λ \lim \limits_{x \rightarrow 0}(z-a) f(z)=\lambda x0lim(za)f(z)=λ

S S S, 上一致成立, 则有

lim ⁡ r → 0 ∫ S r f ( z ) d z = i ( θ 2 − θ 1 ) λ . \lim \limits_{r \rightarrow 0} \int_{S_{r}} f(z) \mathrm{d} z=\mathrm{i}\left(\theta_{2}-\theta_{1}\right) \lambda . r0limSrf(z)dz=i(θ2θ1)λ.


因为

i ( θ 2 − θ 1 ) λ = λ ∫ S , d z z − a \mathrm{i}\left(\theta_{2}-\theta_{1}\right) \lambda=\lambda \int_{S,} \frac{\mathrm{d} z}{z-a} i(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值