在数学分析中, 对于反常积分, 也可以类似地定义它的柯西主值. 又在定理 6.8中假定 Q ( z ) Q(z) Q(z) 无实零点, 现在我们可以把条件放宽一点, 容许 Q ( z ) Q(z) Q(z)有有限多个一阶零点,即允许函数 f ( z ) = P ( z ) Q ( z ) e i m z f(z)=\frac{P(z)}{Q(z)} \mathrm{e}^{\mathrm{i} m z} f(z)=Q(z)P(z)eimz在实轴上有有限个一阶极点. 为了估计挖去这种极点后沿辅助路径的积分,除了上面两个引理外, 再引进一个与引理 6.1 相似的引理.
引理 6.3
设 f ( z ) f(z) f(z) 沿圆弧 S r : z − a = r e i θ ( θ 1 ⩽ θ ⩽ θ 2 , r S_{r}: z-a=r \mathrm{e}^{i \theta}\left(\theta_{1} \leqslant \theta \leqslant \theta_{2}, r\right. Sr:z−a=reiθ(θ1⩽θ⩽θ2,r充分小 ) ) ) 上连续, 且
lim x → 0 ( z − a ) f ( z ) = λ \lim \limits_{x \rightarrow 0}(z-a) f(z)=\lambda x→0lim(z−a)f(z)=λ
于 S S S, 上一致成立, 则有
lim r → 0 ∫ S r f ( z ) d z = i ( θ 2 − θ 1 ) λ . \lim \limits_{r \rightarrow 0} \int_{S_{r}} f(z) \mathrm{d} z=\mathrm{i}\left(\theta_{2}-\theta_{1}\right) \lambda . r→0lim∫Srf(z)dz=i(θ2−θ1)λ.
证
因为
i ( θ 2 − θ 1 ) λ = λ ∫ S , d z z − a \mathrm{i}\left(\theta_{2}-\theta_{1}\right) \lambda=\lambda \int_{S,} \frac{\mathrm{d} z}{z-a} i(