手把手教你多种方式体验Qwen2最强开源大模型

前几天看到新闻openai将开始限制来自非支持国家和地区的API流量,目前OpenAI的API已向161个国家和地区开放,中国内地和中国香港未包含其中。这对于中国使用openai的用户来说算是彻底断了念想,好在国内大模型近些日来迅猛发展,前段时间刚开源的阿里Qwen2蝉联开源大模型榜首,已经和chatgpt不相上下,这篇文章主要介绍如何多方式体验Qwen2。

1.Qwen2介绍+在线使用

qwen2官网介绍:https://qwenlm.github.io/zh/blog/qwen2/

在线体验:

主要亮点:

  • 5个尺寸的预训练和指令微调模型, 包括Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B以及Qwen2-72B;
  • 在中文英语的基础上,训练数据中增加了27种语言相关的高质量数据;
  • 多个评测基准上的领先表现;
  • 代码和数学能力显著提升;
  • 增大了上下文长度支持,最高达到128K tokens(Qwen2-72B-Instruct)。

在2个评估数据集上进行验证:

M-MMLU: 来自Okapi的多语言常识理解数据集

MGSM:包含德、英、西、法、日、俄、泰、中和孟在内的数学评测。

在这里插入图片描述结果均反映了Qwen2指令微调模型突出的多语言能力。

优化点:

通义千问技术博客披露,在Qwen1.5系列中,只有32B和110B的模型使用了GQA。这一次,所有尺寸的模型都使用了GQA,以便让用户体验到GQA带来的推理加速和显存占用降低的优势。针对小模型,由于embedding参数量较大,研发团队使用了tie embedding的方法让输入和输出层共享参数,增加非embedding参数的占比。

上下文长度方面,所有的预训练模型均在32K tokens的数据上进行训练,研发团队发现其在128K tokens时依然能在PPL评测中取得不错的表现。然而,对指令微调模型而言,除PPL评测之外还需要进行大海捞针等长序列理解实验。在使用YARN这类方法时,Qwen2-7B-Instruct和Qwen2-72B-Instruct均实现了长达128K tokens上下文长度的支持。

目前在多项权威榜单和测评中,Qwen2-72B成为开源模型排行榜第一名。

2. 本地部署

  • 本地部署:使用 llama.cpp 和 Ollama 等框架在 CPU 和 GPU 上本地运行 Qwen 模型的说明。
  • Docker:预先构建的 Docker 镜像可用于简化部署。
  • ModelScope:推荐中国大陆用户使用,支持下载检查点并高效运行模型。
  • 推理框架:使用 vLLM 和 SGLang 部署 Qwen 模型进行大规模推理的示例。

2.1 Ollama 使用

Ollama下载:https://ollama.com/download
在这里插入图片描述

官网下载安装成功,打开终端安装:ollama run qwen2:7b
在这里插入图片描述

安装成功,测试使用,利用qwen2-7B写一个冒泡排序,速度感人
在这里插入图片描述

2.2 vllm部署

参考:deplo

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值