目录
Python实例题
题目
Python破解验证码
1. 简单数字字母验证码(OCR 识别)
对于简单的由数字和字母组成的验证码,可以使用 Python 的pytesseract
库结合Pillow
库进行 OCR(光学字符识别)。
步骤
-
安装依赖库
pip install pytesseract pillow
-
安装 Tesseract OCR
- 在 Windows 上,从 Tesseract OCR 官网 下载安装包并安装。
- 在 Linux 上,可以使用包管理器安装,例如在 Ubuntu 上:
sudo apt-get install tesseract-ocr
- 在 macOS 上,可以使用 Homebrew 安装:
brew install tesseract
-
编写代码
import pytesseract
from PIL import Image
# 设置 Tesseract OCR 的路径(Windows 需要设置)
# pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
def crack_simple_captcha(image_path):
try:
image = Image.open(image_path)
# 可以对图像进行预处理,如灰度化、降噪等
image = image.convert('L')
captcha_text = pytesseract.image_to_string(image)
return captcha_text.strip()
except Exception as e:
print(f"发生错误: {e}")
return None
if __name__ == "__main__":
image_path = 'captcha.png' # 替换为实际验证码图片路径
result = crack_simple_captcha(image_path)
if result:
print(f"识别结果: {result}")
代码解释
- 导入
pytesseract
和Pillow
库。 crack_simple_captcha
函数打开验证码图片,将其转换为灰度图像,然后使用pytesseract
进行识别。
2. 滑动验证码破解
滑动验证码通常需要模拟用户的滑动操作,结合图像识别确定滑动距离。以下是一个简单的示例思路,使用Selenium
库模拟浏览器操作。
步骤
-
安装依赖库
pip install selenium
-
下载浏览器驱动
- 例如 Chrome 浏览器,从 ChromeDriver 官网 下载对应版本的驱动。
-
编写代码
from selenium import webdriver
from selenium.webdriver.common.action_chains import ActionChains
import time
def crack_slide_captcha():
driver = webdriver.Chrome() # 替换为对应浏览器驱动
driver.get('https://example.com') # 替换为包含滑动验证码的页面 URL
# 找到滑块元素和缺口背景元素
slider = driver.find_element_by_id('slider') # 替换为实际滑块元素的 ID
background = driver.find_element_by_id('background') # 替换为实际缺口背景元素的 ID
# 这里需要使用图像识别确定滑动距离,示例中假设为 200 像素
slide_distance = 200
# 模拟滑动操作
ActionChains(driver).click_and_hold(slider).move_by_offset(slide_distance, 0).release().perform()
time.sleep(2) # 等待验证结果
# 可以根据页面元素判断验证是否成功
# 例如:
# success_element = driver.find_element_by_id('success')
# if success_element.is_displayed():
# print("验证成功")
# else:
# print("验证失败")
driver.quit()
if __name__ == "__main__":
crack_slide_captcha()
代码解释
- 使用
Selenium
打开包含滑动验证码的页面。 - 找到滑块元素和缺口背景元素,通过图像识别确定滑动距离(示例中假设为 200 像素)。
- 使用
ActionChains
模拟滑动操作,最后根据页面元素判断验证是否成功。
注意事项
- 合法性:确保你的破解行为是在合法合规的前提下进行,例如用于测试自己开发的系统。
- 验证码复杂度:对于复杂的验证码,如动态验证码、扭曲变形验证码等,简单的方法可能无法有效破解。