LangChain组件Tools/Toolkits详解(1)——Tools接口与创建工具概述

LangChain组件Tools/Toolkits之Tools详解

前言

本系列文章主要介绍WEB界面工具Gradio。Gradio是Hugging Face发布的简易WebUI开发框架,它基于FastAPI和svelte,可以使用机器学习模型、python函数或API开发多功能界面,并可部署人工智能模型,是当前热门的非常易于展示机器学习大语言模型LLM及扩散模型DM的WebUI框架。
本系列文章分为五部分:Gradio介绍、HuggingFace资源与工具库、Gradio基础功能实战、Gradio与大模型融合实战和Gradio高级功能实战。第一部分Gradio介绍,包括三章内容:第一章先介绍Gradio的概念,包括详细技术架构、历史、应用场景、与其他框架Gradio/NiceGui/StreamLit/Dash/PyWebIO的区别,然后详细介绍了Gradio的安装与运行,安装包括Linux/Win/Mac三类系统安装,运行包括普通方式和热重载方式;第二章介绍Gradio的4种部署方式,包括本地部署launch()、huggingface托管、FastAPI挂载和Gradio-Lite浏览器集成;第三章介绍Gradio的三种Client,包括python客户端、javascript客户端和curl客户端,方便读者对Gradio整体把握。第二部分介绍著名网站Hugging Face的各类资源和工具库,因为Gradio演示中经常用到Hugging Face的models及某些场景需要部署在spaces,包括两章内容:第四章详解三类资源models/datasets/spaces的使用,第五章实战六类工具库transformers/diffusers/datasets/PEFT/accelerate/optimum实战。第三部分是Gradio基础功能实战,进入本系列文章的核心,包括四章内容:第六章讲解Gradio库的模块架构和环境变量,第七章讲解Gradio高级抽象界面类Interface,第八章讲解Gradio底层区块类Blocks,第九章讲解补充特性Additional Features。第四部分是Gradio与大模型融合实战,包括二章内容:第十章讲解融合大模型的多模态聊天机器人组件Chatbot,第十一章讲述将LLM封装为工具的Gradio Tools。第五部分讲述LangChain,包括四章内容:第十二章讲述LangChain优势分析、学习资料及架构,第十三章讲述LangChain组件Chat models,第十四章讲述组件Tools/Toolkits,第十五章讲述其它五类主要组件:Text splitters/Document loaders/Embedding models/Vector stores/Retrievers。第六部分是使用Agent构建Gradio,包括两章内容:第十六章讲解使用langchain.agents和LangGraph构建Gradio,第十七章讲述使用transformers.agents构建Gradio。第七部分讲述Gradio其它高级功能,包括三章内容:第十八章讲述Discord Bot/Slack Bot/Website Widget部署,第十九章讲述数据科学与绘图Data Science And Plots,第二十章讲述流式传输Streaming。
本系列文章讲解细致,涵盖Gradio及相关框架的大部分组件和功能,代码均可运行并附有大量运行截图,方便读者理解并应用到开发中,Gradio一定会成为每个技术人员实现各种奇思妙想的最称手工具。

本系列文章目录如下:

  1. 《Gradio全解1——Gradio简介》
  2. 《Gradio全解1——Gradio的安装与运行》
  3. 《Gradio全解2——Gradio的3+1种部署方式实践》
  4. 《Gradio全解2——浏览器集成Gradio-Lite》
  5. 《Gradio全解3——Gradio Client:python客户端》
  6. 《Gradio全解3——Gradio Client:javascript客户端》
  7. 《Gradio全解3——Gradio Client:curl客户端》
  8. 《Gradio全解4——剖析Hugging Face:详解三类资源models/datasets/spaces》
  9. 《Gradio全解5——剖析Hugging Face:实战六类工具库transformers/diffusers/datasets/PEFT/accelerate/optimum》
  10. 《Gradio全解6——Gradio库的模块架构和环境变量》
  11. 《Gradio全解7——Interface:高级抽象界面类(上)》
  12. 《Gradio全解7——Interface:高级抽象界面类(下)》
  13. 《Gradio全解8——Blocks:底层区块类(上)》
  14. 《Gradio全解8——Blocks:底层区块类(下)》
  15. 《Gradio全解9——Additional Features:补充特性(上)》
  16. 《Gradio全解9——Additional Features:补充特性(下)》
  17. 《Gradio全解10——Chatbot:融合大模型的多模态聊天机器人》
  18. 《Gradio全解11——Gradio Tools:将LLM封装为工具》
  19. 《Gradio全解12——LangChain优势分析、学习资料及架构》
  20. 《Gradio全解13——LangChain组件Chat models详解》
  21. 《Gradio全解14——LangChain组件Tools/Toolkits详解》
  22. 《Gradio全解15——LangChain其它五类组件》
  23. 《Gradio全解16——使用langchain.agents和LangGraph构建Gradio》
  24. 《Gradio全解17——使用transformers.agents构建Gradio》
  25. 《Gradio全解18——Discord Bot/Slack Bot/Website Widget部署》
  26. 《Gradio全解19——Data Science And Plots:数据科学与绘图》
  27. 《Gradio全解20——Streaming:流式传输》

本章目录如下:

  1. 《LangChain组件Tools/Toolkits详解(1)——Tools接口与创建工具概述》
  2. 《LangChain组件Tools/Toolkits详解(2)——装饰器@tool》
  3. 《LangChain组件Tools/Toolkits详解(3)——结构化工具StructuredTool》
  4. 《LangChain组件Tools/Toolkits详解(4)——处理Error》
  5. 《LangChain组件Tools/Toolkits详解(5)——返回产物artifact》
  6. 《LangChain组件Tools/Toolkits详解(6)——特殊类型注解》
  7. 《LangChain组件Tools/Toolkits详解(7)——工具调用与Toolkits》

本篇摘要

本章介绍LangChain组件Tools/Toolkits。

14. LangChain组件Tools/Toolkits详解

工具(Tools)是一种封装函数及其模式schema的方法,可以传递给聊天模型,使模型能够请求执行带有特定输入的工具函数,例如从数据库获取数据、发出API请求或运行自定义代码。LangChain中的tool抽象类将Python函数与定义函数名称、描述和预期参数的模式schema关联起来,以明确创建工具的作用及调用方式。本节将从Tools接口与创建工具概述、装饰器@tool、结构化工具StructuredTool、处理Error、返回产物artifact、特殊类型注解、工具调用和Toolkits等方面详细介绍工具。

14.1 Tools接口与创建工具概述

本节将Tools接口与创建工具概述合并在一起讲述。

14.1.1 Tools接口

Tools接口在BaseTool类中定义,该类是Runnable Interface的子类,它与工具模式schema对应的关键属性有:

参数描述
name工具的名称。
description工具功能的描述。
args返回工具参数的JSON模式的属性。
args_schema类型为pydantic.BaseModel,可选但推荐使用,如果使用回调处理器则是必需的,它可用于提供更多信息(如few-shot少样本示例)或对预期参数进行验证。
return_direct仅与代理相关,当为True时,在调用给定工具后,代理将停止并直接将结果返回给用户。

与工具关联的执行函数的关键方法有:

  • invoke:使用给定的参数调用工具;
  • ainvoke:异步使用给定的参数调用工具,用于与LangChain进行异步编程。

下面看一下创建工具的概念。

14.1.2 创建工具概述

LangChain 支持从以下方式创建工具:

  1. 函数:通过简单的@tool装饰器或StructuredTool即可实现,适用于大多数用例;
  2. LangChain Runnables:接受字符串或字典输入的LangChain Runnables可以使用as_tool方法转换为工具,该方法允许为参数指定名称、描述和其他模式信息;
  3. 继承BaseTool类:通过从BaseTool进行子类化来定义自定义工具。这提供了对工具定义的最大控制,但需要编写更多的代码。

对于大多数用例,从函数创建工具可能已经足够,可以通过简单的 @tool 装饰器实现。如果需要更多配置(例如,同时指定同步和异步实现),还可以使用StructuredTool.from_function类方法。LangChain还可以通过子类化BaseTool类或使用LangChain Runnables创建工具,但通常建议在大多数情况下使用@tool装饰器。

工具更多信息请参考工具(Tools);有关@tool的详细信息和示例,请参阅:API reference for @tool以获取更多详情,从Runnables创建工具请参阅:How to convert Runnables to Tools,有关子类化BaseTool和StructuredTool请参阅:how to create custom tools guide指南中的示例。下面讲述通过函数创建工具的两种方法:装饰器@tool和StructuredTool。

参考文献

  1. LangChain - Conceptual guide- Tools
  2. All LangChain tool how-to guides
【源码免费下载链接】:https://renmaiwang.cn/s/p79ex 作为一种广泛应用的光子学设备,调Q光纤激光器通过调节激光系统的Q因子,我们可以有效地产生高强度、短时宽的光脉冲。在现代科学技术中,MATLAB作为一款功能强大的数值计算和仿真软件,在科学工程领域中,它通常被用来进行数值模拟和数据分析。对于像调Q光纤激光器这样的复杂系统,我们可以通过下载名为“基于matlab的调Q光纤激光器模拟Q.zip”的压缩包来获取相关的建模代码或教学资源。这种技术的核心机制是通过动态调整谐振腔中的能量损耗比(即增益损耗之和的比例),从而实现瞬间释放大量能量,形成高功率脉冲。在MATLAB环境下进行这样的仿真研究,通常会围绕以下几个重点内容展开:首先,我们需要深入理解激光器的工作原理,这包括对其物理组成及功能的基本认识。其次,在涉及到光纤作为主要载波介质时,也需要掌握其特定的光学特性。此外,在数值模拟过程中,我们还必须建立合理的数学模型来描述激光腔内的光场演化过程等关键环节。通过这些分析可以发现,调Q光纤激光器的工作原理优化设计在很大程度上依赖于对激光器内部物理机制的深入理解以及精准的数值模拟技术的应用。在此基础上,我们需要掌握如何通过调节系统的各个参数(如Q开关的动作速度、泵浦功率等),来实现最佳的工作性能。同时,在实际操作中,我们还需要注意一些关键的技术要点,例如如何处理光纤中的非线性效应对激光器输出的影响。最后,在完成数值模拟之后,我们可以通过MATLAB提供的强大可视化工具,将仿真结果以图形或曲线的形式呈现出来,从而更直观地分析系统的动态行为特性。综上所述,“基于matlab的调Q光纤激光器模拟Q.zip”这个压缩包可能包含了完整的代码实现和相关实验数据,这对于我们深入学习这一技术领域具有重要的参考价值。如果有机会可以运行这些文件并进行进一步研究,相信会对掌握
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值