LangChain组件Chat models详解(4)——结构化输出


本章目录如下:

  1. 《Gradio全解13——LangChain组件Chat models详解(1)——功能介绍
  2. 《Gradio全解13——LangChain组件Chat models详解(2)——接口
  3. 《Gradio全解13——LangChain组件Chat models详解(3)——消息(Messages)
  4. 《Gradio全解13——LangChain组件Chat models详解(4)——结构化输出
  5. 《Gradio全解13——LangChain组件Chat models详解(5)——多模态
  6. 《Gradio全解13——LangChain组件Chat models详解(6)——高级主题

本篇摘要

本章介绍LangChain组件Chat Models。

13. LangChain组件Chat models详解

LangChain本身集成了大量供应商和组件,资料庞杂,理解起来颇有难度。Chat models作为LangChain的主要组件,涵盖了最常用的功能,也是各提供商集成的主要载体,所以本章将详细介绍Chat models。更详细资料请参阅官方LangChain Componets文档

本章主要内容包括Chat models介绍、接口、消息、结构化输出、多模态和高级主题,为后续使用Agent创建Gradio做铺垫。

13.4 结构化输出

对于聊天机器人等应用,模型需要直接以自然语言响应用户。然而在某些场景中,需要模型以结构化格式输出,比如希望将模型输出存储在数据库中,并确保输出符合数据库模式。这种需求促成了结构化输出的概念,即可以指示模型以特定的输出结构进行响应。

结构化输出包含以下关键概念:
(1) 模式定义:输出结构以模式schema的形式表示,可以通过多种方式定义,本文列举两种:一个是python dict方式,另一种是通过Pydantic;
(2) 返回结构化输出:模型通过工具绑定或结构化函数被赋予某种模式,模型将被指示返回符合该模式的输出;另外还可以通过模型参数配置结构化输出格式。
在这里插入图片描述
下面看一下模式定义以及其它配置模式方法。

13.4.1 模式Schema定义

模式定义的核心概念是模型响应的输出结构需要以某种方式表示。虽然对象类型取决于正在使用的模型,但有一些常见的对象类型被推荐用于Python中的结构化输出。有两种方式定义结构化输出Schema:一种是python dict方式,另一种是通过Pydantic。

1. 使用python字典

第一种Schema定义方法:结构化输出最简单且最常见的格式是类似JSON的结构,在Python中可以用字典(dict)或列表(list)表示,或直接使用JSON对象。而JSON对象(或Python中的dict)通常在工具需要原始、灵活且低开销的结构化数据时直接使用。定义代码如下:

# 使用大括号定义
dict_schema|json_schema = {
  "answer": "The answer to the user's question",
  "followup_question": "A followup question the user could ask"
}
# 使用dict()函数定义一个字典
dict_schema2 = dict(answer="The answer to the user's question", followup_question="A followup question the user could ask")
# 使用

注意:python dict的定义使用单引号或双引号都可以,但JSON格式必须使用双引号。

2. 使用Pydantic

第二种方法是使用Pydantic:Pydantic对于定义结构化输出模式特别有用,因为它提供了类型提示和验证。以下是一个Pydantic模式的示例:

from pydantic import BaseModel, Field
class ResponseFormatter(BaseModel):
    """Always use this tool to structure your response to the user."""
    answer: str = Field(description="The answer to the user's question")
    followup_question: str = Field(description="A followup question the user could ask")

13.4.2 返回结构化输出

定义了模式后,我们需要一种方法来指示模型使用它。虽然可以将此模式包含在提示中并礼貌地请求模型使用它,但并不推荐,有几种更强大的方法可以通过模型提供商API中的原生功能来使用schema:工具调用、JSON模式和结构化输出方法。

1. 使用工具调用

许多模型提供商支持工具调用,这一概念在工具调用指南中已有更详细的讨论。简而言之,工具调用涉及将工具绑定到模型,并在适当的时候,模型可以决定调用此工具并确保其响应符合工具的模式。有了这个理论,核心概念就很简单:只需将我们的模式作为工具绑定到模型上即可!以下是使用上面定义的ResponseFormatter模式的一个示例:

from langchain_openai import ChatOpenAI
model = ChatOpenAI(model="gpt-4o", temperature=0)
# Bind responseformatter schema as a tool to the model
model_with_tools = model.bind_tools([ResponseFormatter])
# Invoke the model
ai_msg = model_with_tools.invoke("What is the powerhouse of the cell?")

工具调用的参数tool_calls已经被提取为一个字典,这个字典可以选择性地被解析为一个Pydantic对象,与我们原始的ResponseFormatter模式相匹配,如下所示:

# Get the tool call arguments
ai_msg.tool_calls[0]["args"]
{'answer': "The powerhouse of the cell is the mitochondrion. Mitochondria are organelles that generate most of the cell's supply of adenosine triphosphate (ATP), which is used as a source of chemical energy.",
 'followup_question': 'What is the function of ATP in the cell?'}
# Parse the dictionary into a pydantic object
pydantic_object = ResponseFormatter.model_validate(ai_msg.tool_calls[0]["args"])

关于工具请参考后面章节。

2. JSON模式

除了工具调用外,一些模型提供商还支持一种称为JSON模式的功能。它支持将JSON模式定义作为输入,并强制模型生成符合要求的JSON输出。你可以在Chat models中找到支持JSON模式的模型提供商的表格:Featured Providers,或见下面截图。以下是如何使用OpenAI的JSON模式的示例:

from langchain_openai import ChatOpenAI
model = ChatOpenAI(model="gpt-4o", model_kwargs={ "response_format": { "type": "json_object" } })
ai_msg = model.invoke("Return a JSON object with key 'random_ints' and a value of 10 random ints in [0-99]")
ai_msg.content
'\n{\n  "random_ints": [23, 47, 89, 15, 34, 76, 58, 3, 62, 91]\n}'

需要注意的一个重要事项:模型仍然返回一个字符串,需要将其解析为JSON对象,这可以使用json库或JSON输出解析器来完成。如果需要更高级的功能,请参阅how-to guide on the JSON output parser。这里使用json库将模型输出解析为JSON对象,代码如下:

import json
json_object = json.loads(ai_msg.content)
{'random_ints': [23, 47, 89, 15, 34, 76, 58, 3, 62, 91]}
3. 结构化输出方法

使用上述方法生成结构化输出时存在一些挑战:

  • 当使用工具调用时,需要将工具调用参数从字典解析回原始模式;
  • 此外,当我们希望强制执行结构化输出时,需要指示模型始终使用工具,这是一个特定于提供商的设置;
  • 当使用JSON模式时,需要将输出解析为JSON对象。

考虑到这些挑战,LangChain提供了一个辅助函数:with_structured_output()来简化这一过程,代码如下:

# Bind the schema to the model
model_with_structure = model.with_structured_output(ResponseFormatter)
# Invoke the model
structured_output = model_with_structure.invoke("What is the powerhouse of the cell?")
# Get back the pydantic object
structured_output
ResponseFormatter(answer="The powerhouse of the cell is the mitochondrion. Mitochondria are organelles that generate most of the cell's supply of adenosine triphosphate (ATP), which is used as a source of chemical energy.", followup_question='What is the function of ATP in the cell?')

这既将模式作为工具绑定到模型,又将输出解析为指定的输出模式。

推荐用法:LangChain提供的with_structured_output(),它自动化了将模式绑定到模型并解析输出的过程,此辅助函数适用于所有支持结构化输出的模型提供商,在信息提取任务中非常有用,更多信息请阅读Structured outputs

参考文献

  1. LangChain - Conceptual guide- Chat models
<think>好的,我现在需要帮助用户了解LangChain4j的详细介绍、功能和使用教程。首先,我要回顾用户提供的引用内容,看看有哪些信息可以利用。 用户给出了五个引用,其中引用[1]提到LangChain4j的入门教程和框架介绍,引用[2]提供了学习材料和示例代码库的链接,引用[3]提到了核心API类型,引用[4]比较了LangChain4j和Spring AI的文档结构,引用[5]有项目教程的地址。这些信息是关键,我需要整合它们来回答用户的问题。 首先,关于介绍部分,应该从引用[1]和引用[3]入手,说明LangChain4j是什么,它的核心功能是集成大语言模型,支持对话和语言模型。需要提到它的模块化设计,如对话管理、数据增强、工具集成,这些可能在引用[3]的核心API中有涉及。 接下来是功能部分,需要详细列出主要功能。引用[3]提到核心API,可能包括Chat Models、Memory Management、Chains、Tools等。此外,引用[1]的入门教程可能涉及这些功能的具体应用,比如链式调用、工具集成。需要确保每个功能点都有对应的引用支持。 使用教程部分,用户提供的引用[2]有很多资源链接,比如示例代码库、教程、用例等。需要将这些资源整理成步骤,例如从环境配置到核心功能使用,再到实际案例。可能需要分步说明如何开始,如何调用API,如何构建链式流程,以及如何集成外部工具。同时,引用[5]的项目教程地址也可以作为实际项目的参考。 用户可能还希望知道如何系统学习LangChain4j,这里可以结合引用[4]提到的文档结构问题,建议用户按照官方文档和示例代码逐步学习,同时参考社区资源。此外,引用[2]中的学习材料和教程链接应该推荐给用户。 需要注意的是,回答中要正确应用引用标识,比如在介绍部分末尾添加[^1],在核心API部分引用[^3],在教程资源处引用[^2]和[^5]。同时,避免使用任何Markdown格式,保持自然的中文表达。 可能用户还会关心LangChain4j与其他框架(如Spring AI)的比较,引用[4]提到文档结构混乱但使用方便,可以在介绍中适当提及,但用户的问题主要是介绍、功能和使用,所以可能放在相关问题部分作为扩展。 最后,生成的相关问题需要围绕LangChain4j的深入学习,比如与Spring AI的比较、核心组件详解、实际项目案例以及调试技巧,这些都能帮助用户进一步探索。</think>### LangChain4j 详细介绍与使用指南 #### 1. **框架简介** LangChain4j 是一个专为 Java 开发者设计的开源框架,旨在简化大语言模型(LLM)的集成与应用开发。其核心功能包括: - **对话与语言模型支持**:集成主流 LLM(如 OpenAI、Hugging Face),提供统一 API 调用接口[^3]。 - **模块化设计**:支持对话管理(Memory)、数据增强(Retrieval-Augmented Generation)、工具集成(Tools)等功能模块。 - **链式流程构建**:通过组合多个组件(如模型调用、数据检索、工具执行)实现复杂任务自动化[^3]。 #### 2. **核心功能** 1. **Chat Models** 支持多模型调用(如 GPT-4、Claude),示例代码: ```java ChatLanguageModel model = OpenAiChatModel.builder().apiKey("YOUR_KEY").build(); String response = model.generate("Hello!"); ``` 2. **Memory 管理** 自动维护对话上下文,支持短期/长期记忆存储。 3. **Chains(链式流程)** 组合多个步骤(如“问题→检索→生成答案”),适用于复杂任务编排。 4. **Tools(工具集成)** 可调用外部 API、数据库或自定义代码,扩展模型能力[^1]。 #### 3. **使用教程** **步骤 1:环境配置** - 添加 Maven 依赖: ```xml <dependency> <groupId>dev.langchain4j</groupId> <artifactId>langchain4j-open-ai</artifactId> <version>0.31.0</version> </dependency> ``` 参考官方示例库:[langchain4j-examples](https://github.com/langchain4j/langchain4j-examples)[^2]。 **步骤 2:核心功能实践** - **对话模型调用**: ```java OpenAiChatModel model = OpenAiChatModel.withApiKey("sk-xxx"); String answer = model.generate("如何学习 LangChain4j?"); ``` - **构建问答链**: ```java RetrievalAugmentor augmentor = // 配置检索器(如 Elasticsearch) ConversationalChain chain = ConversationalChain.builder() .chatLanguageModel(model) .retrievalAugmentor(augmentor) .build(); ``` 完整案例参考:[DeepLearning.AI 教程](https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/)。 **步骤 3:实际项目参考** - 社区项目示例:[langchain4j-aideepin](https://gitcode.com/gh_mirrors/la/langchain4j-aideepin),展示了客服对话、知识库问答等场景实现。 #### 4. **学习资源推荐** - **官方文档**:[LangChain4j 功能文档](https://docs.langchain4j.dev/category/tutorials) - **系统学习路径**:从基础 API 到复杂链式设计,结合文档与示例逐步深入[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值