三维空间刚体运动1:旋转矩阵与变换矩阵(详解加代码示例)


序:本篇系列文章参照高翔老师《视觉SLAM十四讲从理论到实践》,讲解三维空间刚体运动,为读者打下坚实的数学基础。博文将原第三讲分为五部分来讲解,其中四元数部分较多较复杂,又分为四部分。如果读者急于实践,可直接阅读第五部分的机器人运动轨迹,此部分详细讲解了安装准备工作。此系列总体目录如下:

  1. 旋转矩阵和变换矩阵
  2. 旋转向量表示旋转
  3. 欧拉角表示旋转
  4. 四元数包括以下部分:
    4-1. 四元数表示变换
    4-2. 四元数线性插值方法:LinEuler/LinMat/Lerp/Nlerp/Slerp
    4-3. 四元数多点插值方法:Squad
    4-4. 四元数多点连续解析解插值方法:Spicv
    4-5. 四元数多点离散数值解插值方法:Sping
  5. 实践:SLAM中显示机器人运动轨迹及相机位姿

在正式开始之前,我想先分享学习体会。之前看SLAM,看到第六讲放弃了,无他,前边理解的不深刻,后边的越来越难以理解,学了一本强化学习之后,才静下心继续学SLAM。所以在此建议SLAM小伙伴们,高翔博士该讲的都在书里,只不过太过精简,不怕各位笑话,第三讲和第四讲反反复复来回看了四遍。所以学习SLAM的关键,就是温故而知新,多多体会总结,串联起前后相关的知识点,融会贯通才能理解后边的内容。

本博文首先介绍向量及其坐标表示,并介绍了向量间的运算;然后,使用欧式变换描述坐标系之间的运动,它由旋转和平移组成,旋转由旋转矩阵 S O ( 3 ) SO(3) SO(3)描述,而平移直接由一个 R 3 \mathbb{R}^{3} R3向量描述;最后,如果将旋转和平移放在一个矩阵中,就形成了变换矩阵 S E ( 3 ) SE(3) SE(3),陌生符号会在下文讲解。最后在欧氏变换基础上,讲解了相似、仿射和射影变换。

1. 点、向量和坐标系

这里讲一下刚体、点、向量、坐标和坐标系、内积和外积的概念,为了引出 a ∧ a^{\wedge } a

刚体:刚体是形状和大小不发生变化的物体,我们日常生活的空间是三维的,所以一个空间点的位置可以由3个坐标指定,而刚体不光有位置,还有自身的姿态,姿态是指物体的朝向。
:点是空间中的基本元素,没有长度没有体积,两个点连接起来,构成了向量。
向量:可以看成从某点指向另一点的箭头,他是空间中的一样东西,向量在坐标系中表示为坐标,同一向量在不同坐标系中的坐标不同。
坐标:假设在线性空间中,找到了该空间的一组(就是张成这个空间的一组线性无关的向量,也称为基底),记为 ( e 1 , e 2 , e 3 ) (e_{1},e_{2},e_{3}) (e1,e2,e3),那么任意向量 a a a在这组基下就有一个坐标
a = [ e 1 , e 2 , e 3 ] [ a 1 a 2 a 3 ] = a 1 e 1 + a 2 e 2 + a 3 e 3 . (1.1) a = [e_{1},e_{2},e_{3}]\begin{bmatrix} a_{1}\\ a_{2}\\ a_{3} \end{bmatrix} = a_{1}e_{1} + a_{2}e_{2} + a_{3}e_{3}. \tag{1.1} a=[e1,e2,e3]a1a2a3=a1e1+a2e2+a3e3.(1.1)这里 ( a 1 , a 2 , a 3 ) T (a_{1},a_{2},a_{3})^{T } (a1,a2,a3)T称为 a a a在此基下的坐标。坐标的具体取值,一是和向量本身有关,二是和坐标系(基)的选取有关。注意:本文的向量均为列向量,与一般数学书籍相同。
坐标系:通常由3个正交的坐标轴组成,当给定 x x x y y y轴, z z z轴就可以通过右手(或左手)法则由 x × y x \times y x×y定义出来。根据定义方式不同,又分为左手系和右手系。右手系中,大拇指指向 x x x轴正向,食指指向 y y y轴正向,中指所指方向即为 z z z轴方向。大部分3D程序库使用右手系(如OpenGL、3D Max等),也有部分库使用左手系(如Unity、Direct3D等)。
内积:向量的数乘、加减法不再赘述。通常意义下的内积可以写成: a ⋅ b = a T b = ∑ i = 1 3 a i b i = ∣ a ∣ ∣ b ∣ c o s ⟨ a , b ⟩ . (1.2) a\cdot b= a^{T}b= \sum_{i=1}^{3}a_{i}b_{}i= \left | a \right |\left | b \right |cos \left \langle a,b \right \rangle. \tag{1.2} ab=aTb=i=13aibi=abcosa,b.(1.2)其中 ⟨ a , b ⟩ \left \langle a,b \right \rangle a,b指向量 a , b a,b a,b的夹角。内积也可以描述向量间的投影关系。
外积:外积是这个样子: a × b = ∥ e 1 e 2 e 3 a 1 a 2 a 3 b 1 b 2 b 3 ∥ = [ a 2 b 3 − a 3 b 2 a 3 b 1 − a 1 b 3 a 1 b 2 − a 2 b 1 ] = [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] b = d e f a ∧ b . (1.3) a\times b= \begin{Vmatrix} e_{1} & e_{2} & e_{3}\\ a_{1} & a_{2} & a_{3}\\ b_{1} & b_{2} & b_{3} \end{Vmatrix}= \begin{bmatrix} a_{2}b_{3}-a_{3}b_{2}\\ a_{3}b_{1}-a_{1}b_{3}\\ a_{1}b_{2}-a_{2}b_{1} \end{bmatrix}= \begin{bmatrix} 0 & -a_{3} & a_{2}\\ a_{3} & 0 & -a_{1}\\ -a_{2} & a_{1} & 0 \end{bmatrix}b \xlongequal[]{def} a^{\wedge }b. \tag{1.3} a×b=e1a1b1e2a2b2e3a3b3=a2b3a3b2a3b1a1b3a1b2a2b1=0a3a2a30a1a2a10bdef ab.(1.3)外积的结果是一个向量,它的方向垂直于这两个向量,大小为 ∣ a ∣ ∣ b ∣ s i n ⟨ a , b ⟩ \left | a \right |\left | b \right |sin \left \langle a,b \right \rangle absina,b,是两个向量张成的四边形的有向面积。对于外积运算,引入 ∧ ^{\wedge } 符号,可以把 a a a写成一个矩阵,它是一个反对称矩阵( A T = − A A^{T}=-A AT=A)。你可以将 ∧ ^{\wedge } 记成一个反对称符号,读作hat,这样就把外积 a × b a\times b a×b写成了矩阵与向量的乘法 a ∧ b a^{\wedge}b ab,把它变成了线性运算。这个符号非常重要,会经常用到,并且此符号是一个一一映射,意味着任意向量都对应着唯一的一个反对称矩阵,反之亦然: a ∧ = [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] . (1.4) a^{\wedge }= \begin{bmatrix} 0 & -a_{3} & a_{2}\\ a_{3} & 0 & -a_{1}\\ -a_{2} & a_{1} & 0 \end{bmatrix}. \tag{1.4} a=0a3a2a30a1a2a10.(1.4)

2.坐标系间的欧式变换

此节是整篇甚至整本书的重中之重,请重点要理解掌握。博主也会极力详细讲清楚。首先,由刚体运动引出欧式变换。

我们经常在实际场景中定义各种各样的坐标系,如果考虑运动的机器人(即相机),那么常见的做法是设定一个惯性坐标系(或者叫世界坐标系),可以认为它是固定不动的。这时就会有这样的疑问:相机视野中某个向量p,它在相机坐标系下的坐标为 p c p_{c} pc,而在世界坐标系下看,其坐标为 p w p_{w} pw,那么,这两个坐标之间是如何转换的呢?这时,需要先得到该点针对机器人坐标系的坐标值,再根据机器人位姿变换到世界坐标系中,可以通过数学手段的变换矩阵 T T T来描述它。

刚体运动:两个坐标系之间的运动变换由一个旋转加上一个平移组成,这种运动就是刚体运动。相机运动就是一个刚体运动。刚体运动过程中,同一个向量在各个坐标系下的长度和夹角都不会发生变化。此时,我们说手机坐标系和世界坐标系之间,相差了一个欧氏变换(Euclidean Transform)。欧氏变换由旋转和平移组成。

2.1 旋转

我们首先考虑旋转。由旋转引出旋转矩阵和特殊正交群 S O ( n ) SO(n) SO(n)
旋转矩阵:设某个单位正交基 e = ( e 1 , e 2 , e 3 ) e=(e_{1},e_{2},e_{3}) e=(e1,e2,e3)经过一次旋转变成了 e ′ = ( e 1 ′ , e 2 ′ , e 3 ′ ) e{}'=(e_{1}{}',e_{2}{}',e_{3}{}') e=(e1,e2,e3)。那么,对于同一个向量 a a a,它在两个坐标系下的坐标为 [ a 1 , a 2 , a 3 ] [a_{1},a_{2},a_{3}] [a1,a2,a3] [ a 1 ′ , a 2 ′ , a 3 ′ ] [a_{1}{}',a_{2}{}',a_{3}{}'] [a1,a2,a3],因为向量本身没变,所以根据坐标定义,有: [ e 1 , e 2 , e 3 ] [ a 1 a 2 a 3 ] = [ e 1 ′ , e 2 ′ , e 3 ′ ] [ a 1 ′ a 2 ′ a 3 ′ ] . (2.1) [e_{1},e_{2},e_{3}]\begin{bmatrix} a_{1}\\ a_{2}\\ a_{3} \end{bmatrix} = [e_{1}{}',e_{2}{}',e_{3}{}']\begin{bmatrix} a_{1}{}'\\ a_{2}{}'\\ a_{3}{}' \end{bmatrix} . \tag{2.1} [e1,e2,e3]a1a2a3=[e1,e2,e3]a1a2a3.(2.1)为了描述两个坐标之间的关系,对上式两边同时左乘 e T e^{T} eT,那么左侧系数变为单位矩阵,所以: [ a 1 a 2 a 3 ] = [ e 1 T e 1 ′ e 1 T e 2 ′ e 1 T e 3 ′ e 2 T e 1 ′ e 2 T e 2 ′ e 2 T e 3 ′ e 3 T e 1 ′ e 3 T e 2 ′ e 3 T e 3 ′ ] [ a 1 ′ a 2 ′ a 3 ′ ] = d e f R a ′ . (2.2) \begin{bmatrix} a_{1}\\ a_{2}\\ a_{3} \end{bmatrix} = \begin{bmatrix} e_{1}^{T}e_{1}{}' & e_{1}^{T}e_{2}{}' & e_{1}^{T}e_{3}{}'\\ e_{2}^{T}e_{1}{}' & e_{2}^{T}e_{2}{}' & e_{2}^{T}e_{3}{}'\\ e_{3}^{T}e_{1}{}' & e_{3}^{T}e_{2}{}' & e_{3}^{T}e_{3}{}' \end{bmatrix}\begin{bmatrix} a_{1}{}'\\ a_{2}{}'\\ a_{3}{}' \end{bmatrix} \xlongequal{def} \mathbf{R}a{}'. \tag{2.2} a1a2a3=e1Te1e2Te1e3Te1e1Te2e2Te2e3Te2e1Te3e2Te3e3Te3a1a2a3def Ra.(2.2)矩阵 R \mathbf{R} R由两组基的内积组成,刻画了旋转前后同一个向量的坐标变换关系,矩阵 R \mathbf{R} R描述了旋转本身,因此称为旋转矩阵(Rotation Matrix)。同时,该矩阵各分量是两个坐标系基的内积,所以实际上是各基向量夹角的余弦值,故也叫方向余弦矩阵(Direction Cosine Matrix)。
同时,旋转矩阵 R \mathbf{R} R也是正交矩阵,它的逆(即转置)描述了一个相反的旋转。按照上面的定义方式,有: a ′ = R − 1 a = R T a . (2.3) a{}'=\mathbf{R}^{-1}a=\mathbf{R}^{T}a. \tag{2.3} a=R1a=RTa.(2.3)显然, R − 1 \mathbf{R}^{-1} R1 R T \mathbf{R}^{T} RT刻画了一个相反的旋转。

特殊正交群 S O ( n ) SO(n) SO(n):旋转矩阵 R R R是一个行列式为1的正交矩阵(即 A − 1 = A T A^{-1} = A^{T} A1=AT),反之,行列式为1的正交矩阵也是一个旋转矩阵。所以,可以将 n n n维旋转矩阵的集合定义如下: S O ( n ) = { R ∈ R n × n ∣ R R T = I , d e t ( R ) = 1 } . (2.4) SO(n)= \left \{ {\mathbf{R}\in \mathbb{R}^{n\times n}|\mathbf{R}\mathbf{R}^{T}= \mathbf{I},det(\mathbf{R})= 1} \right \}. \tag{2.4} SO(n)={RRn×nRRT=I,det(R)=1}.(2.4) S O ( n ) SO(n) SO(n)是特殊正交群(Special Orthogonal Group)的意思。这个集合由 n n n维空间的旋转矩阵,特别的, S O ( 3 ) SO(3) SO(3)就是指三维空间的旋转。通过旋转矩阵,可以直接谈论两个坐标系之间的旋转变换,而不用再从基谈起。

2.2 平移

在欧式变换中,除了旋转还有平移。
考虑世界坐标系中的向量 a a a,经过一次旋转矩阵 R R R和一个平移向量 t t t后,得到 a ′ a{}' a,那么把旋转和平移合到一起,有: a ′ = R a + t . (2.5) \mathbf{a{}' }= \mathbf{R}\mathbf{a} + \mathbf{t}. \tag{2.5} a=Ra+t.(2.5)通过上式,我们用一个旋转矩阵 R R R和一个平移向量 t t t完整的描述了一个欧式空间的坐标变换。

同时,这里对下标做一下说明。实际当中,我们会定义坐标系1,坐标系2,那么向量 a a a在两个坐标系下的坐标为 a 1 , a 2 a_{1},a_{2} a1,a2,它们之间的关系应该是: a 1 = R 12 a 2 + t 12 . (2.6) a_{1} = R_{12}a_{2}+t_{12}. \tag{2.6} a1=R12a2+t12.(2.6)这里的 R 12 R_{12} R12是指“把坐标系2的向量变换到坐标系1”,即“从2到1的旋转矩阵”。由于向量乘在矩阵的右边,所以它的下标是从右读到左的。关于平移向量 t 12 t_{12} t12,它实际对应的是坐标系1原点指向坐标系2原点的向量,在坐标系1下取的坐标,所以建议读者把它记作“从1到2的向量”,它的下标是从左读到右的,但它并不等于 − t 21 -t_{21} t21

3.齐次坐标和变换矩阵

对于式(2.5)所表达的欧式空间的旋转和平移还存在一个问题:这里的变换关系是一个线性关系。假设我们进行了两次变换: R 1 , t 1 R_{1},t_{1} R1,t1 R 2 , t 2 R_{2},t_{2} R2,t2 b = R 1 a + t 1 , c = R 2 b + t 2 . (3.1) b = R_{1}a+t_{1}, c = R_{2}b+t_{2}. \tag{3.1} b=R1a+t1,c=R2b+t2.(3.1)那么,从 a a a c c c的变换为: c = R 2 ( R 1 a + t 1 ) + t 2 . (3.2) c = R_{2}(R_{1}a+t_{1})+t_{2}.\tag{3.2} c=R2(R1a+t1)+t2.(3.2)这样的形式在变换多次之后会显得很啰嗦。因此引入齐次坐标和变换矩阵。

齐次坐标:这里使用一个数学技巧:我们在一个三维向量的末尾添加1,将其变为四维向量 a ~ = [ a 1 ] \tilde{a}= \begin{bmatrix} a\\ 1 \end{bmatrix} a~=[a1],称为齐次坐标。齐次坐标表示法就是用 n + 1 n+1 n+1维向量表示一个 n n n维向量。
n n n维空间中的点的位置向量用非齐次坐标表示为 ( P 1 , P 2 . . . P n ) (P_{1}, P_{2}...P_{n}) (P1,P2...Pn),它具有 n n n个分量且唯一。使用齐次坐标表示时,表示为 ( h P 1 , h P 2 . . . h P n , h ) , (hP_{1}, hP_{2}...hP_{n},h), (hP1,hP2...hPn,h)该向量有 n + 1 n+1 n+1个坐标分量且不唯一。
对于h,通常使 h = 1 h=1 h=1。如果 h ≠ 1 h\neq 1 h=1 h ≠ 0 h\neq 0 h=0,使用h除以齐次坐标各分量,这一方法称为齐次坐标的规范化。如果 h = 0 h=0 h=0,该点表示一个无穷远点。三元组 ( 0 , 0 , 0 ) (0,0,0) (0,0,0)不表示任何点。原点表示为 ( 0 , 0 , 0 , 1 ) (0,0,0,1) (0,0,0,1)

变换矩阵:对于齐次坐标,我们可以把旋转和平移写在一个矩阵里,使得整个关系变成线性关系: a ~ = [ a ′ 1 ] = [ R t 0 T 1 ] [ a 1 ] = d e f T [ a 1 ] = [ R a + t 1 ] . (3.3) \tilde{a}= \begin{bmatrix} a{}'\\ 1 \end{bmatrix}= \begin{bmatrix} R & t\\ 0^{T} & 1 \end{bmatrix}\begin{bmatrix} a\\ 1 \end{bmatrix} \xlongequal{def} T\begin{bmatrix} a\\ 1 \end{bmatrix} = \begin{bmatrix} Ra+t\\ 1 \end{bmatrix}. \tag{3.3} a~=[a1]=[R0Tt1][a1]def T[a1]=[Ra+t1].(3.3)在该式中,矩阵 T T T称为变换矩阵(Transform Matrix)。

那么依靠齐次坐标和变换矩阵,两次变换的叠加就可以有很好的形式: b ~ = T 1 a ~ , c ~ = T 2 b ~ ⇒ c ~ = T 2 T 1 a ~ . (3.4) \tilde{b}= T_{1}\tilde{a}, \tilde{c}= T_{2}\tilde{b} \Rightarrow \tilde{c}= T_{2}T_{1}\tilde{a} . \tag{3.4} b~=T1a~,c~=T2b~c~=T2T1a~.(3.4)但是区分齐次和非齐次坐标的符号令我们厌烦,所以,在不引起歧义的情况下,以后直接把它写成 b = T a b=Ta b=Ta的样子,默认其中进行了齐次坐标的转换。

特殊欧式群 S E ( 3 ) SE(3) SE(3):对于变换矩阵T,它具有比较特别的结构:左上角为旋转矩阵,右上角为平移向量,左下角为 0 0 0向量,右下角为1。这种矩阵又称为特殊欧式群(Special Euclidean Group): S E ( 3 ) = { T E = [ R t 0 T 1 ] ∈ R 4 × 4 ∣ R ∈ S O ( 3 ) , t ∈ R 3 } . (3.5) SE(3)= \left \{ T_{E}= \begin{bmatrix} R & t\\ 0^{T} & 1 \end{bmatrix} \in \mathbb{R}^{4\times 4}|R\in SO(3), t\in \mathbb{R}^{3}\right \}.\tag{3.5} SE(3)={TE=[R0Tt1]R4×4RSO(3),tR3}.(3.5) S O ( 3 ) SO(3) SO(3)一样,求解该矩阵的逆 T − 1 T^{-1} T1,表示一个反向的变换: T − 1 = [ R T − R T t 0 T 1 ] . (3.6) T^{-1}= \begin{bmatrix} R^{T} & -R^{T}t\\ 0^{T} & 1 \end{bmatrix}. \tag{3.6} T1=[RT0TRTt1].(3.6)同样,我们用 T 12 T_{12} T12这样的写法表示从2到1的变换。在不引起歧义的情况下,以后不可以区别齐次坐标与普通坐标的符号,默认使用的是符合运算法则的那一种,因为齐次坐标与非齐次坐标之间的转换事实上非常容易。

4. 相似、仿射和射影变换

除了欧式变换,3D空间还存在其他几种变换方式,只不过欧氏变换是最简单的。它们一部分和测量几何有关,因为在之后的讲解中可能会提到,所以先罗列出来。欧氏变换保持了向量的长度和夹角,相当于我们把一个刚体原封不动地进行了移动或旋转,不改变它自身的样子。但现实中由于角度问题,总会发生畸变,所以需要相似、仿射、射影变换,它们都会改变物体的外形。它们都有类似的矩阵表示。

4.1 相似变换

相似变换比欧式变换多了一个自由度,它允许物体进行均匀缩放,其矩阵表示为: T S = [ s R t 0 T 1 ] (4.1) T_{S}=\begin{bmatrix} sR & t\\ 0^{T} &1 \end{bmatrix}\tag{4.1} TS=[sR0Tt1](4.1)
注意,旋转部分多了一个缩放因子 s s s,它表示我们在对向量旋转之后,可以在 x , y , z x,y,z x,y,z三个坐标上进行均匀缩放。由于含有缩放,相似变换不再保持图形的面积不变。你可以想象一个边长为1的立方体经过相似变换后,变成边长为10的立方体。
三维相似变换的集合也叫做相似变换群,记作 S i m ( 3 ) Sim(3) Sim(3)

4.2 仿射变换

仿射变换的矩阵形式如下: T A = [ A t 0 T 1 ] (4.2) T_{A}=\begin{bmatrix} A & t\\ 0^{T} &1 \end{bmatrix}\tag{4.2} TA=[A0Tt1](4.2)与欧氏变换不同二十,仿射变换只要求 A A A是一个可逆矩阵,而不必是正交矩阵。仿射变换也叫正交投影,经过仿射变换之后,立方体就不再是方的了,但是各个方面仍然是平行四边形

4.3 射影变换

射影变换是最一般的变换,又称为投影变换。它的矩阵形式为: T P = [ A t a T v ] (4.3) T_{P}=\begin{bmatrix} A & t\\ a^{T} &v \end{bmatrix}\tag{4.3} TP=[AaTtv](4.3)它的左上角为可逆矩阵 A A A,右上角为平移 t t t,左下角为缩放 a T a^{T} aT,右下角为整体的变换比例 v v v。由于采用了齐次坐标,当 v ≠ 0 v\neq 0 v=0时,我们可以对整个矩阵除以 v v v得到一个右下角为1的矩阵;否则当 v = 0 v=0 v=0时,得到右下角为0的矩阵。因此,2D的射影变换一共有8个自由度,3D则共有15个自由度。
射影变换是讲过的变换中,形式最一般的。从真实世界到相机照片的变换可以看成一个射影变换。读者可以想象一个原本方形的地板砖,在照片中是什么样子?首先,它不再是方形的,由于近大远小的关系,它甚至不是平行四边形,而是一个不规则的四边形。这也是位姿中常遇到的情况。

4.4 总结

下面对比总结下讲到的四种变换的性质。注意在“不变性质”中,从上到下是有包含关系的。例如,欧氏变换除了保体积,也具有保平行、相交等性质。

表4-1 常见变换的性质比较

变换名称矩阵形式自由度不变性质变换形态
欧氏变换 T E = [ R t 0 T 1 ] T_{E}=\begin{bmatrix} R & t\\ 0^{T} &1 \end{bmatrix} TE=[R0Tt1]6长度、夹角、体积位置,方向改变
相似变换 T S = [ s R t 0 T 1 ] T_{S}=\begin{bmatrix} sR & t\\ 0^{T} &1 \end{bmatrix} TS=[sR0Tt1]7体积比按比例缩放
仿射变换 T A = [ A t 0 T 1 ] T_{A}=\begin{bmatrix} A & t\\ 0^{T} &1 \end{bmatrix} TA=[A0Tt1]12平行性、体积比正交投影,平行性不变
射影变换 T P = [ A t a T v ] T_{P}=\begin{bmatrix} A & t\\ a^{T} &v \end{bmatrix} TP=[AaTtv]15接触平面的相交和相切大小、平行性均发生改变

从真实世界到相机照片的变换是一个射影变换。如果相机的焦距为无穷远,那么这个变换为仿射变换。在详细学习相机模型之前,只要对它们有个大致了解即可。

5.实践:Eigen

本节讲解如何使用Eigen表示矩阵和向量,随后引申至旋转矩阵与变换矩阵的运算。KDevelop工程形式的代码在附件中。

Eigen:Eigen是一个C++开源线性代数库,它提供了快速的有关矩阵的线性代数运算,还包括解方程等功能。许多上层的软件库也使用Eigen进行矩阵运算,包括g2o、Sophus等。与其他库相比,Eigen的特殊之处在于,它是一个纯用头文件搭建起来的库,这意味着你只能找到它的头文件,而没有类似.so或.a的二进制文件。在使用时,只需引入头文件即可,不需要链接库文件。例程只是介绍了基本的矩阵运算,你可以通过Eigen官网教程学习更多Eigen知识。

如果没有安装Eigen,请输入以下命令进行安装:

sudo apt install libeigen3-dev

下面写一段代码来实际练习Eigen的使用(已添加注释):

#include<iostream>
using namespace std;

#include<ctime>
#include<eigen3/Eigen/Core>
#include<eigen3/Eigen/Dense>  //稠密矩阵的代数运算,如逆、特征值等
using namespace Eigen;

#define MATRIX_SIZE 50

int main(int argc, char **argv){
    //Eigen中所有向量和矩阵都是Eigen::Matrix,它是一个模板类,前三个参数为数据类型、行、列。下式为声明一个2*3的float矩阵
    Matrix<float, 2, 3> matrix_23f;
    //同时,Eigen通过typedef提供了许多内置类型,不过底层仍是Eigen::Matrix,例如Vector3d实质上是Eigen::Matrix<double, 3, 1>,即三维向量。
    Vector3d v_3d;
    Matrix<float, 3, 1> matrix_31f;
    
    Matrix3d matrix_33d = Matrix3d::Zero();
    //如果不确定大小,可使用动态大小的矩阵,Matrix<double, Dynamic, Dynamic>与MatrixXd相同。
    Matrix<double, Dynamic, Dynamic> matrix_dynamic;
    MatrixXd matrix_x;
    
    //下面是对Eigen矩阵的操作
    
    //输入数据进行初始化
    matrix_23f<<1,2,3,4,5,6;
    cout<<"matrix 2*3 from 1 to 6:\n"<<matrix_23f<<endl;
    
    //用()访问矩阵中的元素
    cout<<"print matrix 2*3:"<<endl;
    for (int i=0; i<2; i++) {
        for (int j=0; j<3; j++) {
            cout<<matrix_23f(i, j)<<"\t";
        }
        cout<<endl;
    }
    
    v_3d << 3,2,1;
    matrix_31f<<4,5,6;
    
    //在Eigen中,不能混合两种不同类型的矩阵,必须进行显式转换。同样,不能搞混维度
    Matrix<double, 2, 1> result = matrix_23f.cast<double>() * v_3d;
    cout<<"[1,2,3;4,5,6]*[3,2,1]="<<result.transpose()<<endl;
    
    Matrix<float, 2, 1> result2 = matrix_23f * matrix_31f;
    cout<<"[1,2,3;4,5,6]*[4,5,6]="<<result2.transpose()<<endl;

    //同样,不能搞混维度,下面是个错误例子。当你在编译程序,出现莫名其妙的错误时,请首先仔细检查你所进行运算矩阵的维度,这点相当重要。
    //Eigen::Matrix<double, 2, 3> result_wrong_dimension = matrix_23f.cast<double>()*v_31d;
    
    //一些矩阵运算
    matrix_33d = Matrix3d::Random();    //随机数矩阵
    cout<<"random matrix: \n"<<matrix_33d<<endl;
    cout<<"transpose: \n"<<matrix_33d.transpose()<<endl;    //转置
    cout<<"sum: "<<matrix_33d.sum()<<endl;    //各元素和
    cout<<"trace: "<<matrix_33d.trace()<<endl;    //迹
    cout<<"times 10: \n"<<10 * matrix_33d<<endl;    //数乘
    cout<<"inverse: \n"<<matrix_33d.inverse()<<endl;    //逆
    cout<<"det: "<<matrix_33d.determinant()<<endl;    //行列式
    
    //特征值和特征向量,实对称矩阵可保证对角化成功。
    SelfAdjointEigenSolver<Matrix3d> eigen_solver(matrix_33d.transpose()*matrix_33d);
    cout<<"Eigen values=\n"<<eigen_solver.eigenvalues()<<endl;
    cout<<"Eigen vectors=\n"<<eigen_solver.eigenvectors()<<endl;
    
    //解方程,这里求解方程matrix_NN * x = v_N1d
    Matrix<double, MATRIX_SIZE, MATRIX_SIZE> matrix_NN = MatrixXd::Random(MATRIX_SIZE, MATRIX_SIZE);
    matrix_NN = matrix_NN * matrix_NN.transpose();
    Matrix<double, MATRIX_SIZE, 1> v_N1d = MatrixXd::Random(MATRIX_SIZE, 1);
    
    //计时
    clock_t time_stt = clock();
    //直接求逆,运算量大
    Matrix<double, MATRIX_SIZE, 1> x = matrix_NN.inverse()*v_N1d;
    cout<<"time of normal inverse is "<<1000*(clock()-time_stt)/(double)CLOCKS_PER_SEC<<"ms"<<endl;
    cout<<"x = "<<x.transpose()<<endl;
    
    time_stt = clock();
    //通常用矩阵分解来求解,例如QR分解,速度会快很多
    x = matrix_NN.colPivHouseholderQr().solve(v_N1d);
    cout<<"time of Qr decomposition is "<<1000*(clock()-time_stt)/(double)CLOCKS_PER_SEC<<"ms"<<endl;
    cout<<"x = "<<x.transpose()<<endl;
    
    time_stt = clock();
    //对于正定矩阵,还可以用cholesky分解来解方程
    x = matrix_NN.ldlt().solve(v_N1d);
    cout<<"time of ldlt decomposition is "<<1000*(clock()-time_stt)/(double)CLOCKS_PER_SEC<<"ms"<<endl;
    cout<<"x = "<<x.transpose()<<endl;
    
    time_stt = clock();
    //此外还有lu分解
    x = matrix_NN.lu().solve(v_N1d);
    cout<<"time of lu decomposition is "<<1000*(clock()-time_stt)/(double)CLOCKS_PER_SEC<<"ms"<<endl;
    cout<<"x = "<<x.transpose()<<endl;
}

CMakeLists.txt文件内容如下:

cmake_minimum_required(VERSION 3.0)
project(rigidMotion)
add_executable(useEigen useEigen.cpp)
set(CMAKE_BUILD_TYPE "Debug")

编译好程序后,运行它,可以看到各矩阵运算结果如下:

matrix 2*3 from 1 to 6:
1 2 3
4 5 6
print matrix 2*3:
1	2	3	
4	5	6	
[1,2,3;4,5,6]*[3,2,1]=10 28
[1,2,3;4,5,6]*[4,5,6]=32 77
random matrix: 
 0.680375   0.59688 -0.329554
-0.211234  0.823295  0.536459
 0.566198 -0.604897 -0.444451
transpose: 
 0.680375 -0.211234  0.566198
  0.59688  0.823295 -0.604897
-0.329554  0.536459 -0.444451
sum: 1.61307
trace: 1.05922
times 10: 
 6.80375   5.9688 -3.29554
-2.11234  8.23295  5.36459
 5.66198 -6.04897 -4.44451
inverse: 
-0.198521   2.22739    2.8357
  1.00605 -0.555135  -1.41603
 -1.62213   3.59308   3.28973
det: 0.208598
Eigen values=
0.0242899
 0.992154
  1.80558
Eigen vectors=
-0.549013 -0.735943  0.396198
 0.253452 -0.598296 -0.760134
-0.796459  0.316906 -0.514998
time of normal inverse is 1.967ms
x = -55.7896 -298.793  130.113 -388.455 -159.312  160.654 -40.0416 -193.561  155.844  181.144  185.125 -62.7786  19.8333 -30.8772 -200.746  55.8385 -206.604  26.3559 -14.6789  122.719 -221.449   26.233  -318.95 -78.6931  50.1446  87.1986 -194.922  132.319  -171.78 -4.19736   11.876 -171.779  48.3047  84.1812 -104.958 -47.2103 -57.4502 -48.9477 -19.4237  28.9419  111.421  92.1237 -288.248 -23.3478  -275.22 -292.062  -92.698  5.96847 -93.6244  109.734
time of Qr decomposition is 2.409ms
x = -55.7896 -298.793  130.113 -388.455 -159.312  160.654 -40.0416 -193.561  155.844  181.144  185.125 -62.7786  19.8333 -30.8772 -200.746  55.8385 -206.604  26.3559 -14.6789  122.719 -221.449   26.233  -318.95 -78.6931  50.1446  87.1986 -194.922  132.319  -171.78 -4.19736   11.876 -171.779  48.3047  84.1812 -104.958 -47.2103 -57.4502 -48.9477 -19.4237  28.9419  111.421  92.1237 -288.248 -23.3478  -275.22 -292.062  -92.698  5.96847 -93.6244  109.734
time of ldlt decomposition is 0.667ms
x = -55.7896 -298.793  130.113 -388.455 -159.312  160.654 -40.0416 -193.561  155.844  181.144  185.125 -62.7786  19.8333 -30.8772 -200.746  55.8385 -206.604  26.3559 -14.6789  122.719 -221.449   26.233  -318.95 -78.6931  50.1446  87.1986 -194.922  132.319  -171.78 -4.19736   11.876 -171.779  48.3047  84.1812 -104.958 -47.2103 -57.4502 -48.9477 -19.4237  28.9419  111.421  92.1237 -288.248 -23.3478  -275.22 -292.062  -92.698  5.96847 -93.6244  109.734
time of lu decomposition is 0.787ms
x = -55.7896 -298.793  130.113 -388.455 -159.312  160.654 -40.0416 -193.561  155.844  181.144  185.125 -62.7786  19.8333 -30.8772 -200.746  55.8385 -206.604  26.3559 -14.6789  122.719 -221.449   26.233  -318.95 -78.6931  50.1446  87.1986 -194.922  132.319  -171.78 -4.19736   11.876 -171.779  48.3047  84.1812 -104.958 -47.2103 -57.4502 -48.9477 -19.4237  28.9419  111.421  92.1237 -288.248 -23.3478  -275.22 -292.062  -92.698  5.96847 -93.6244  109.734

附件包含了第三讲所有代码。
后续会介绍刚体运动第二部分:旋转向量和欧拉角,以及第三部分:四元数表示旋转。请继续学习,欢迎留言讨论,你的关注是我更新下去的动力。

本文基于《视觉SLAM十四讲:从理论到实践》和《Quaternions, Interpolation and Animation》编写,但相对于原文会适当精简,同时为便于全面理解,会收集其他网络好文,根据作者理解,加入一些注解和扩展知识点,如果您觉得还不错,请一键四连(点赞关注收藏评论),让更多的人看到。

参考文献:

  1. 《视觉SLAM十四讲:从理论到实践》,高翔、张涛等著,中国工信出版社
  • 20
    点赞
  • 132
    收藏
    觉得还不错? 一键收藏
  • 11
    评论
在MATLAB中,可以使用旋转矩阵来实现三维空间刚体运动旋转矩阵是一种正交矩阵,它可以保持长度、角度、面积等特征不变的仿射变换,即内积和度量不变。旋转矩阵的逆等于它的转置,同时行列式的值为正负1。 在MATLAB中,可以使用makehgtform函数来创建旋转矩阵。例如,如果给定一个单位向量normal和旋转角度theta,可以使用下面的代码创建旋转矩阵Matrix_Rot: theta=acos(costheta); Matrix_Rot=makehgtform('axisrotate',normal,theta); 其中,normal是旋转轴的单位向量,theta是旋转角度。这样,Matrix_Rot就是表示刚体运动旋转矩阵。 更多关于旋转矩阵的信息,可以参考维基百科的页面和博客文章。关于MATLAB中的刚体运动旋转矩阵的应用,还可以参考博客文章。 总结起来,MATLAB中的三维空间刚体运动可以通过旋转矩阵来实现,旋转矩阵是一种正交矩阵,它可以保持长度、角度、面积等特征不变的仿射变换。在MATLAB中,可以使用makehgtform函数来创建旋转矩阵。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [3D视觉(三)刚体运动及matlab实现](https://blog.csdn.net/piaoxuezhong/article/details/78524498)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值