Llama 3.2 微调指南

让我们通过微调 Llama 3.2 来找到一些精神上的平静。

我们需要安装 unsloth,以更小的尺寸实现 2 倍的快速训练

!pip install unsloth

!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
我们将使用 Unsloth,因为它显著提高了微调大型语言模型 (LLM) 的效率,特别是 LLaMA 和 Mistral。使用 Unsloth,我们可以使用高级量化技术(例如 4 位和 16 位量化)来减少内存并加快训练和推理速度。这意味着我们甚至可以在资源有限的硬件上部署强大的模型,而不会影响性能。

此外,Unsloth 广泛的兼容性和定制选项允许执行量化过程以满足产品的特定需求。这种灵活性加上其将 VRAM 使用量减少高达 60% 的能力,使 Unsloth 成为 AI 工具包中必不可少的工具。它不仅仅是优化模型,而是让尖端 AI 更易于访问,更高效地应用于现实世界。

对于微调,我使用了以下设置:

为什么是 LLaMA 3.2?

它是开源且可访问的,并提供了根据特定需求进行自定义和微调的灵活性。由于 Meta 的模型权重是开源的,因此可以非常轻松地对任何问题进行微调,我们将在 Hugging Face 的心理健康数据集上对其进行微调

 NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - AI模型在线查看 - Three.js虚拟轴心开发包 - 3D模型在线减面 - STL模型在线切割

1、Python库

数据处理和可视化

import os
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
plt.style.use('ggplot')

LLM模型训练:

import torch
from trl import SFTTrainer
from transformers import TrainingArguments, TextStreamer
from unsloth.chat_templates import get_chat_template
from unsloth import FastLanguageModel
from datasets import Dataset
from unsloth import is_bfloat16_supported

# Saving model
from transformers import AutoTokenizer, AutoModelForSequenceClass
### 如何对 LLAMA 3.2 模型进行微调 #### 微调的基础概念 微调是一种迁移学习技术,它允许开发者利用预训练模型的知识并将其适配到特定的任务上。对于像 LLAMA 3.2 这样的大型语言模型来说,微调可以通过调整部分参数来优化其性能以适应新的应用场景或数据集[^1]。 #### 数据准备 为了成功完成微调过程,首先需要准备好高质量的数据集。这些数据应该代表目标领域内的典型输入输出模式,并且尽可能多样化以便覆盖各种可能的情况。具体而言,在处理视觉任务时还需要收集相应的图片及其描述标签;而对于纯文本任务,则只需整理好对应的语料库即可。 #### 环境搭建与工具安装 在开始实际操作之前,请确保已设置好适合运行深度学习算法的工作环境。这通常涉及到安装必要的软件包以及配置GPU支持(如果适用)。例如Python编程语言及相关框架PyTorch等都是不可或缺的部分。 ```bash pip install torch torchvision transformers accelerate bitsandbytes xformers wandb datasets ``` 上述命令用于安装一些常用的机器学习库,其中`transformers`提供了访问Hugging Face提供的大量预训练模型接口的功能,而其他几个则是辅助性的依赖项。 #### 实现代码示例 下面给出了一段简单的Python脚本作为参考,展示了如何加载LLAMA 3.2基础版本并通过自定义数据集对其进行进一步训练: ```python from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer import datasets tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2") def tokenize_function(examples): return tokenizer(examples['text'], padding="max_length", truncation=True) dataset = datasets.load_dataset('your_custom_dataset') tokenized_datasets = dataset.map(tokenize_function, batched=True) model = AutoModelForCausalLM.from_pretrained("meta-llaam/Llama-3.2") training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=8, per_device_eval_batch_size=8, num_train_epochs=3, weight_decay=0.01, ) trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["test"] ) trainer.train() ``` 此代码片段主要完成了以下几个步骤的操作:首先是实例化了一个基于指定名称初始化好的分词器对象;接着定义了一个函数用来批量转换原始字符串形式的样本成为可供神经网络接受的标准向量表示形式;之后读取外部存储位置中的定制版数据集合,并应用前面提到的方法对其实施标准化处理;最后创建了两个核心组件——一个是待修改的目标模型实体本身,另一个是用来控制整个迭代流程的各项超参设定值组成的容器结构体TrainingArguments[]。 #### 超参数调节建议 当执行完初步实验后发现效果不尽如意之时,不妨尝试改变某些关键属性比如批次大小(batch size),初始学习率(initial learning rate)或者最大轮次数量(maximum number of epochs)等等来进行探索性试验寻找更优解法。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值