引言:你的YOLOv8还在“龟速推理”?
模型导出失败?GPU占用爆表?延迟高达3秒?
本文萃取CSDN 20+篇YOLOv8部署Top贴的核心实战技巧,从模型转换、硬件加速、工程优化三大维度,手把手教你用PyTorch+TensorRT完成工业级部署。文末附赠可直接套用的多平台部署模板+批量推理代码,让推理速度提升10倍,显存占用降低70%!
一、模型准备:让YOLOv8“轻装上阵”
问题:模型臃肿?推理速度慢?
CSDN高赞方案:
- **动态形状支持(Dynamic Shape)**适配多尺度输入
- **层融合(Layer Fusion)**减少计算图节点
- **半精度量化(FP16)**加速推理
# 导出ONNX(关键参数:动态轴、opset版本)
import torch
from ultralytics import YOLO
model = YOLO('yolov8n.pt') # 加载预训练模型
dummy_input = torch.randn(1, 3, 640, 640) # 输入尺寸需匹配训练尺寸
torch.onnx.export(
model,
dummy_input,
"yolov8n.onnx",
input_names=["input"],
output_names=["output"],
dynamic_axes={
"input": {
0: "batch_size"}, "output": {
0: "batch_size"}},
opset_version=17
)
致命错误:
- 输入尺寸与训练时不一致(导致NMS计算错误)
- 未设置
dynamic_axes
(无法处理可变批量)
二、TensorRT加速:让YOLOv8“飞”起来
问题:TensorRT转换失败?推理延迟高?
CSDN竞赛方案:
- 显式精度指定(Explicit Precision)