线性代数之矩阵逆的求法

                                                         求矩阵的逆矩阵逆的求法详解

矩阵的逆定义


针对一个n阶的矩阵A,如果存在一个n阶的矩阵B满足AB=BA=E,则称A是可逆的, B是A的逆。这里记作B=。 矩阵的逆(inverse of a matrix)和数的逆即倒数(inverse of a number)类似即两个元素相乘等于“1”,只不过这里的“1”对应的是一个n阶的单位矩阵(对角线元素全为1,其它元素全为0)。

如果|A|≠0,则A可逆,且= A*/|A| (由伴随矩阵定义得知)

如果|A|=0,则成矩阵A是奇异矩阵,退化的,反之为非奇异矩阵。
 

矩阵逆的性质

  • 如果A可逆,则A逆的逆是A,即 () =A,(类似矩阵的转置)
  • 如果A可逆,λ≠0,则(λA) =1/λ
  • 如果A、B是同阶的且均可逆,AB也可逆,且 (AB) = BA

矩阵逆的求法

初等变换法

对矩阵(A,E)同时实施初等变换,当A变成E时,E变成的矩阵即是

已知矩阵A,求其逆矩阵

伴随矩阵法

N阶矩阵A可逆的充要条件是|A|≠0

已知矩阵A,求其逆矩阵 

注:求解伴随矩阵时,按行求代数余子式,按列形式摆放(构建)。

定义法

因为这种方法对矩阵阶数比较小的比较适合(比如2阶的),所以这种方法不是很常用。

可以按照矩阵逆的定义,假设有个矩阵B(用未知量代替),那么根据AB=BA=E的定义会列出方程组,进而解出各未知量的值,得到最终的矩阵B即为A的逆。

矩阵逆的意义

我们知道当A的行列式不等于0时即|A|≠0是,那么方程Ax=b有唯一解,即

x=b则

 这里即是矩阵A的伴随矩阵(即A的代数余子式按行求按列存放组成的新矩阵)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShenLiang2025

您的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值