线性代数之行列式偏导

                            线性代数之行列式偏导

矩阵偏导

针对y或者f(x)是元素,x是矩阵的情况,则元素对矩阵的求导形式如下:

:这里的 ​ 和矩阵x是同型(行数列数相同)的。

行列式性质

这里假定A是方阵,则有如下性质:

1 余子式是将行列式的第i行、第j列删除后组成的新行列式,一般用如下符号表示:

比较一般的例子(M11)见:

2 对余子式求余因子,则称为代数余子式。表达式为:

3 行列式的值等于某一行(列)的各个元素与其对应的代数余子式的乘积之和,即  

4由行列式A的代数余子式Aij 的转置所构成的矩阵叫做伴随矩阵,其定义如下:

即可简写为: ,其中C为代数余子式。

5 对于非奇异(行列式不为0)的矩阵A,有如下性质:

这里由伴随矩阵的定义得: ,因为A可逆,则容易得上式(即中间式子右乘A-1)。

:这里的A*即是

行列式偏导

因为行列式是标量函数,所以之前关于标量函数的定义与性质都适应于行列式。

按照行列式分量展开的形式看,则有:

针对整个行列式,则有:

:1 这里借助矩阵导数的概念:

2 伴随矩阵等于代数余子式矩阵的转置

行列式偏导与矩阵逆

接行列式偏导的定义,针对行列式A是非奇异(行列式不为0)的情况,则可以进一步转换:

1 将伴随矩阵转换为行列式和矩阵逆的乘积  

2 再结合常数乘矩阵逆的性质,即可将常数提到外面,最终得  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShenLiang2025

您的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值