减少轨迹不确定性分为两类:查询建模
如上图所示,当我们需要查询经过R区域的轨迹时,灰色轨迹(低采样率)是否应该包含在内。
使用独立的概率密度函数在每个时间点或随机过程(如马尔可夫链),以更好地模拟对象的不确定位置,并回答不同的查询。
第二类为:
从不确定性轨迹中进行路径推测。
核心思想:通过多条不确定性轨迹,确定确定性轨迹。如几条轨迹的交汇点为确定点。
具体来说,有两种具体方法:
第一种方法:
一种是为道路网络环境中生成的轨迹而设计的。 除了地图匹配算法之外,这类方法的设置还有两个方面。 首先,减少轨迹不确定性的方法利用了许多其他轨迹的数据,而地图匹配算法仅使用单一轨迹的几何信息和道路网络的拓扑信息。 其次,不确定性方法处理的轨迹采样率可能非常低,例如超过10分钟。 这似乎几乎不可能的地图匹配算法。
第二种方法:
将不相交的网格变成连通区域后,如图14