轨迹不确定性研究—(减少轨迹点之间的不确定性+轨迹隐私保护)

本文探讨了轨迹不确定性减少的两种方法,包括使用概率密度函数模拟位置不确定性和通过多条轨迹推测确定路径。同时,介绍了轨迹隐私保护的两类场景,即实时连续服务中的位置模糊和历史轨迹发布时的匿名化技术。文章引用了锚点校准系统、空间隐形、路径混淆等策略来防止隐私泄露。
摘要由CSDN通过智能技术生成

减少轨迹不确定性分为两类:查询建模


如上图所示,当我们需要查询经过R区域的轨迹时,灰色轨迹(低采样率)是否应该包含在内。

使用独立的概率密度函数在每个时间点或随机过程(如马尔可夫链),以更好地模拟对象的不确定位置,并回答不同的查询。


第二类为:

从不确定性轨迹中进行路径推测。


核心思想:通过多条不确定性轨迹,确定确定性轨迹。如几条轨迹的交汇点为确定点。

具体来说,有两种具体方法:

第一种方法:

一种是为道路网络环境中生成的轨迹而设计的。 除了地图匹配算法之外,这类方法的设置还有两个方面。 首先,减少轨迹不确定性的方法利用了许多其他轨迹的数据,而地图匹配算法仅使用单一轨迹的几何信息和道路网络的拓扑信息。 其次,不确定性方法处理的轨迹采样率可能非常低,例如超过10分钟。 这似乎几乎不可能的地图匹配算法。

第二种方法:


 将不相交的网格变成连通区域后,如图14

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值