文章目录
引言:黑暗环境下的目标检测挑战
在计算机视觉领域,低照度环境下的目标检测一直是一个具有挑战性的问题。传统目标检测算法如YOLO系列在充足光照条件下表现出色,但在黑暗环境中性能显著下降。这主要是因为低照度图像存在噪声大、对比度低、细节丢失等问题,严重影响特征提取的质量。
近年来,低照度图像增强技术取得了显著进展,其中SCINet(Sample-Correction Interaction Network)表现出优异的性能。本文将探讨如何将SCINet集成到YOLOv8的主干网络中,以提升模型在黑暗环境下的目标检测能力。
SCINet网络原理与结构
SCINet核心思想
SCINet是一种基于样本校正交互的低照度图像增强网络,其核心创新在于:
- 多尺度特征交互:通过不同尺度的特征交互,同时处理全局光照校正和局部细节增强
- 自适应校正机制:根据图像内容动态调整增强参数
- 噪声抑制模块:在增强过程中有效抑制噪声放大
网络架构详解
SCINet采用U-Net-like结构,包含三个关键