文章目录
在YOLOv8的目标检测模型中,Neck模块承担了特征融合的重要任务。随着深度学习的发展,如何在保证高精度的同时优化网络结构,使得其能够在资源受限的环境下高效运行,成为了一个至关重要的研究方向。在本文中,我们将重点介绍一种轻量级跨尺度特征融合模块——CCFM(Cross-Scale Fusion Module),并探讨如何将其集成到YOLOv8中,进一步提升模型性能和计算效率。
1. CCFM简介
CCFM(Cross-Scale Fusion Module)是一种针对多尺度特征图进行高效融合的模块。传统的YOLOv8 Neck模块使用固定的融合方式,可能无法充分利用不同尺度的特征信息。CCFM通过跨尺度信息交换和自适应权重机制,能够更加智能地融合来自不同尺度的特征,进而提升检测效果,尤其是在小物体和大物体的检测任务中。
1.1 CCFM的设计理念
CCFM的设计理念是通过轻量级的结构来实现跨尺度特征图的信息互补,解决传统特征融合模块在处理多尺度信息时存在的不足。具体来说,CCFM包括以下几个关键