Multiperspective(多视角) Reuse Prediction

本文介绍了多视角(Multiperspective)缓存重用预测技术,通过七个参数化特征对LLC缓存块的未来重用进行预测,并设计了缓存管理策略,包括块放置、替换和绕过优化。预测器利用感知器学习,结合多种特征进行训练,以提高预测准确性和缓存性能。采样器和LRU策略被用于管理和训练预测器,以适应不同的存储行为。
摘要由CSDN通过智能技术生成

Multiperspective(多视角) Reuse Prediction

  1. 通过使用多个能够展示程序和存储器行为的特征(七个参数化特征)来从多个视角对LLC中的缓存块的未来重用进行预测。利用预测的结果,设计三种cache的管理策略:block placement,replacement,bypass

  2. 真阳性率:样本实际为正样本,此时预测为正样本的概率

    假阳性率:样本实际为负样本,此时预测为正样本的概率
    在这里插入图片描述

  3. LLC的bypass优化:不会被重用的cache block,将直接绕过core cache,bypass到core

  4. Multiperspective Reuse Predictor:一个散列感知器预测器,由多种特征集合索引,并且使用感知器学习的修改版本进行训练,允许通过变量的关联性(variable associativities)来参数化特征。

  5. SDBP(Sampling Dead Block Prediction)

    • 利用一个采样器保存LLC中部分cache set的tags。当LLC一个在采样器中存在的cache set被访问,采样器中的相应的cache set也会认为被访问了。
    • 当一个属于一个cache set的block被访问时,并且这个cache set在采样器
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值