Multiperspective(多视角) Reuse Prediction
-
通过使用多个能够展示程序和存储器行为的特征(七个参数化特征)来从多个视角对LLC中的缓存块的未来重用进行预测。利用预测的结果,设计三种cache的管理策略:block placement,replacement,bypass
-
真阳性率:样本实际为正样本,此时预测为正样本的概率
假阳性率:样本实际为负样本,此时预测为正样本的概率
-
LLC的bypass优化:不会被重用的cache block,将直接绕过core cache,bypass到core
-
Multiperspective Reuse Predictor:一个散列感知器预测器,由多种特征集合索引,并且使用感知器学习的修改版本进行训练,允许通过变量的关联性(variable associativities)来参数化特征。
-
SDBP(Sampling Dead Block Prediction)
- 利用一个采样器保存LLC中部分cache set的tags。当LLC一个在采样器中存在的cache set被访问,采样器中的相应的cache set也会认为被访问了。
- 当一个属于一个cache set的block被访问时,并且这个cache set在采样器