PID 控制器
PID(比例-积分-微分)控制器的公式用于计算控制信号,基于当前误差、误差的积分以及误差的微分。PID控制器的标准公式如下:
u
(
t
)
=
K
p
e
(
t
)
+
K
i
∫
0
t
e
(
τ
)
d
τ
+
K
d
d
e
(
t
)
d
t
u(t) = K_pe(t) + K_i\int_0^te(\tau)d\tau+K_d\frac{de(t)}{dt}
u(t)=Kpe(t)+Ki∫0te(τ)dτ+Kddtde(t)
其中:
- u ( t ) u(t) u(t) 是控制信号。
- e ( t ) e(t) e(t) 是当前误差,即设定点(目标值)与实际值(测量值)之间的差。
- K p K_p Kp 是比例增益。
- K i K_i Ki 是积分增益。
- K d K_d Kd 是微分增益。
离散形式下,PID控制器的公式可以表示为:
u
[
n
]
=
K
p
e
[
n
]
+
K
i
∑
i
=
0
n
e
[
i
]
Δ
t
+
K
d
e
[
n
]
−
e
[
n
−
1
]
Δ
t
u[n] = K_pe[n] + K_i \sum_{i=0}^ne[i] \Delta t +K_d \frac{e[n]-e[n-1]}{ \Delta t}
u[n]=Kpe[n]+Kii=0∑ne[i]Δt+KdΔte[n]−e[n−1]
其中:
- u [ n ] u[n] u[n] 是第 n n n 个采样时刻的控制信号。
- e [ n ] e[n] e[n] 是第 n n n 个采样时刻的误差。
- Δ t \Delta t Δt 是采样周期。
PID控制器的C语言实现
根据上述公式,可以用C语言实现一个离散PID控制器。以下是实现过程:
变量定义和初始化
#include <stdio.h>
// PID控制器参数
float Kp = 1.0; // 比例增益
float Ki = 0.1; // 积分增益
float Kd = 0.05; // 微分增益
// PID控制器状态
float integral = 0.0; // 误差的积分
float previous_error = 0.0; // 上一次的误差
PID 控制器函数
实现一个函数来计算控制信号:
float PID_Controller(float setpoint, float measured_value, float dt) {
// 计算误差
float error = setpoint - measured_value;
// 计算误差的积分
integral += error * dt;
// 计算误差的微分
float derivative = (error - previous_error) / dt;
// 计算控制信号
float control_signal = Kp * error + Ki * integral + Kd * derivative;
// 更新上一次的误差
previous_error = error;
return control_signal;
}
主循环
在循环中使用PID控制器函数来更新控制信号:
int main() {
float setpoint = 1.0; // 目标设定点
float measured_value = 0.0; // 测量的过程变量
float control_signal = 0.0; // 控制信号
float dt = 0.1; // 时间步长(秒)
// 模拟循环
for (int i = 0; i < 100; i++) {
// 模拟过程(这是一个示例,需要替换为你的过程模型)
measured_value += control_signal * dt;
// 使用 PID 控制器计算控制信号
control_signal = PID_Controller(setpoint, measured_value, dt);
// 打印结果
printf("时间: %.2f, 设定点: %.2f, 测量值: %.2f, 控制信号: %.2f\n", i * dt, setpoint, measured_value, control_signal);
}
return 0;
}
考虑事项:
- 参数调节:需要针对具体系统调节 K p K_p Kp、 K i K_i Ki 和 K d K_d Kd 增益以获得期望的性能。
- 积分饱和:实际应用中,可能需要添加逻辑防止积分项过大(积分饱和)。
这是一个基础的PID控制器示例,可以根据需要添加更多功能,如积分抗饱和机制、更高级的数值积分方法等。
动态调整 PID 控制器的参数( K p K_p Kp、 K i K_i Ki 和 K d K_d Kd )
示例1
这种方法被称为自适应控制或增量控制。以下是一个示例,展示了如何根据测量结果动态调整 PID 控制器的增益。
#include <stdio.h>
// PID 控制器参数
float Kp = 1.0; // 初始比例增益
float Ki = 0.1; // 初始积分增益
float Kd = 0.05; // 初始微分增益
// PID 控制器状态
float integral = 0.0; // 误差的积分
float previous_error = 0.0; // 上一次的误差
// 更新 PID 参数的函数
void Update_PID_Gains(float error) {
// 这里是一个简单的示例,可以根据误差调整增益
if (error > 0.5) {
Kp += 0.1;
Ki += 0.01;
Kd += 0.005;
} else if (error < -0.5) {
Kp -= 0.1;
Ki -= 0.01;
Kd -= 0.005;
}
// 防止增益变为负值
if (Kp < 0) Kp = 0;
if (Ki < 0) Ki = 0;
if (Kd < 0) Kd = 0;
}
// PID 控制器函数
float PID_Controller(float setpoint, float measured_value, float dt) {
// 计算误差
float error = setpoint - measured_value;
// 计算误差的积分
integral += error * dt;
// 计算误差的微分
float derivative = (error - previous_error) / dt;
// 计算控制信号
float control_signal = Kp * error + Ki * integral + Kd * derivative;
// 更新上一次的误差
previous_error = error;
// 更新 PID 增益
Update_PID_Gains(error);
return control_signal;
}
int main() {
float setpoint = 1.0; // 目标设定点
float measured_value = 0.0; // 测量的过程变量
float control_signal = 0.0; // 控制信号
float dt = 0.1; // 时间步长(秒)
// 模拟循环
for (int i = 0; i < 100; i++) {
// 模拟过程(这是一个示例,需要替换为你的过程模型)
measured_value += control_signal * dt;
// 使用 PID 控制器计算控制信号
control_signal = PID_Controller(setpoint, measured_value, dt);
// 打印结果
printf("时间: %.2f, 设定点: %.2f, 测量值: %.2f, 控制信号: %.2f, Kp: %.2f, Ki: %.2f, Kd: %.2f\n", i * dt, setpoint, measured_value, control_signal, Kp, Ki, Kd);
}
return 0;
}
示例2
#include <stdio.h>
// PID结构体
typedef struct {
double setpoint; // 设定点
double kp; // 比例系数
double ki; // 积分系数
double kd; // 微分系数
double previous_error; // 上一次的误差
double integral; // 积分项
} PID;
// PID初始化函数
void PID_Init(PID* pid, double setpoint, double kp, double ki, double kd) {
pid->setpoint = setpoint;
pid->kp = kp;
pid->ki = ki;
pid->kd = kd;
pid->previous_error = 0.0;
pid->integral = 0.0;
}
// PID计算函数
double PID_Compute(PID* pid, double input) {
double error = pid->setpoint - input; // 计算误差
// P = kp * error
double p = pid->kp * error;
// I = ki * integral
pid->integral += error;
double i = pid->ki * pid->integral;
// D = kd * (error - previous_error) / dt
// 假设dt为1(即每次调用间隔为1个时间单位),所以简化为:
double d = pid->kd * (error - pid->previous_error);
// 更新误差以供下一次使用
pid->previous_error = error;
// 返回PID输出
return p + i + d;
}
// 假设的性能评估函数
// 在实际应用中,这通常基于系统的实际性能
double evaluate_performance(double output, double setpoint) {
// 返回一个评估值,例如基于误差的绝对值或其他指标
double error = setpoint - output;
return fabs(error); // 绝对误差作为示例
}
// 根据规则调整PID参数
void adjust_pid_parameters(PID* pid, double input, double output, double setpoint) {
double error = setpoint - output;
double derivative = error - pid->previous_error; // 假设dt为1
// 评估当前性能
double performance = evaluate_performance(output, setpoint);
// 假设的调整规则(根据实际需求调整)
if (performance > 10.0) { // 假设的性能阈值
// 如果性能不佳,增加Kp
pid->kp *= 1.1;
// 也可以考虑减少Ki和Kd,以避免积分饱和和微分噪声
// pid->ki *= 0.9;
// pid->kd *= 0.9;
} else if (pid->integral > 100.0) { // 假设的积分阈值
// 如果积分项过大,减少Ki
pid->ki *= 0.9;
}
// 可以添加更多规则来调整Kd等
// 更新误差以供下一次使用
pid->previous_error = error;
}
int main() {
PID pid;
PID_Init(&pid, 100.0, 1.0, 0.1, 0.01); // 初始化PID
double input = 0.0; // 假设的当前输入值
double output;
// 示例:模拟PID控制过程(假设输入值在某个过程中变化)
for (int i = 0; i < 100; i++) {
// 假设输入值在某个过程中逐渐接近设定点
input = i;
// 计算PID输出
output = PID_Compute(&pid, input);
// 在这里,你可以将output应用于系统,例如控制电机的速度或位置
// 评估当前性能并调整PID参数
adjust_pid_parameters(&pid, input, output, pid.setpoint);
// 打印调试信息
printf("Input: %f, Output: %f, Setpoint: %f, Error: %f\n", input, output, pid.setpoint, pid.setpoint - output);
}
return 0;
}
示例3
#include <stdio.h>
#include <math.h>
typedef struct {
double Kp; // 比例增益
double Ki; // 积分增益
double Kd; // 微分增益
double setPoint; // 设定值
double output; // 控制器输出
double lastError; // 上一次的误差
double integral; // 误差积分
} PIDController;
void PID_Init(PIDController *pid, double Kp, double Ki, double Kd, double setPoint) {
pid->Kp = Kp;
pid->Ki = Ki;
pid->Kd = Kd;
pid->setPoint = setPoint;
pid->output = 0.0;
pid->lastError = 0.0;
pid->integral = 0.0;
}
void PID_Update(PIDController *pid, double measuredValue, double dt) {
double error = pid->setPoint - measuredValue;
pid->integral += error * dt;
double derivative = (error - pid->lastError) / dt;
pid->output = pid->Kp * error + pid->Ki * pid->integral + pid->Kd * derivative;
pid->lastError = error;
}
// 简单的自适应规则,根据误差调整Kp, Ki, Kd
void Adapt_PID(PIDController *pid, double error, double dt) {
// 这里只是一个示例,实际的自适应规则可能更复杂
if (fabs(error) > 1.0) {
pid->Kp *= 1.1; // 如果误差较大,增加Kp
pid->Ki *= 1.1; // 增加Ki
pid->Kd *= 0.9; // 减少Kd
} else {
pid->Kp *= 0.9; // 如果误差较小,减少Kp
pid->Ki *= 0.9; // 减少Ki
pid->Kd *= 1.1; // 增加Kd
}
}
int main() {
PIDController pid;
PID_Init(&pid, 1.0, 0.1, 0.05, 100.0);
double measuredValue = 0.0;
double dt = 0.01;
for (int i = 0; i < 1000; i++) {
measuredValue = 100.0 * sin(0.1 * i * dt);
PID_Update(&pid, measuredValue, dt);
Adapt_PID(&pid, pid.setPoint - measuredValue, dt); // 根据误差自适应调整参数
printf("Measured Value: %f, PID Output: %f, Kp: %f, Ki: %f, Kd: %f\n",
measuredValue, pid.output, pid.Kp, pid.Ki, pid.Kd);
}
return 0;
}