模型压缩——将模型复杂度加入loss function

本文探讨了一篇2017年的ICLR论文,该论文提出将全连接层的“密度”和“多样性”纳入损失函数,以促进网络的剪枝和量化压缩。通过这种方式,作者旨在训练出稀疏且低多样性的网络,进一步进行有效压缩。这种方法避免了直接训练小型模型带来的困难,并提供了一种分步迭代的训练策略。
摘要由CSDN通过智能技术生成

这里介绍2017ICLR OpenReview中的一篇有关网络压缩的文章《Training Compressed Fully-Connected Networks with a Density-Diversity Penalty》

看文章标题就知道主要是针对全连接层的,由此我的好感就下降了一半。

———————— 引言 ————————

作者拿VGG说全连接层会占很多资源,压缩这个最重要。好像哪里不对T_T(能压卷积层的才是厉害)。

文章提出了两个名词,我觉得很有意思: “Density”“Diversity”。 这两个名词基本引出了现有的绝大部分深度模型的压缩方法。

“Density” 引出的方法比较有代表性的就是剪枝、矩阵分解等,即降低网络的稀疏度(冗余度),这样模型就被压缩了。

“Diversity”引出的方法比较有代表性的就是量化方法,用少量码字表示一个大的权重矩阵,即降低网络参数的多样性,这样就可以只存储这些不一样的码字,从而压缩模型。

于是,文章将全连接层的密度和多样性也加入loss中进行惩罚,意图使得网络变得更稀疏多样性更差

而这也是我对这篇文章比较喜欢的一点解释: 作者将全连接层的密度和多样性加入loss中进行惩罚并不是为了直接得到一个小的模型,而是为了在此基础上更好使用剪枝和量化的方法(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值