opencv中常用转换

最近在做一个项目,项目中需要进行一些常用类型的转换,把自己收集到资料进行整理,以便后续使用过程中减少搜索的麻烦。

CvMat:矩阵头

<span style="font-size:14px;">typedef struct CvMat{  
  int type;  
  int step:  
  int* refcount;  
  union{  
      uchar* ptr;  
      short* s;  
      int* i;  
      float* fl;  
      double* db;  
  }data;  
union{  
     int rows;  
     int heights;  
};  
union{  
   int cols;  
  int width;  
};  
}CvMat;   </span>

创建矩阵方法:

 cvMat * cvCreateMat (int rows, int cols, int type);

 rows:行数

    cols:列数

 type:数据类型,其格式一般为 CV_<比特数>(S|U|F)C<通道数>,比如 CV_32FC3 就表示 32 位浮点类型的 3 通道矩阵。

CvMat数据读取几种方式:

<span style="font-size:14px;">CvMat* mat;
mat = cvCreateMat(9,10,CV_64FC3);//注意所申请矩阵元素的类型,不同的类型访问操作方法不同,但类似可推导,以此为例。
opencv中的多通道矩阵CvMat元素的访问方法总结如下:
1.
  mat(i,j,1):  *(mat->data.db + i*(mat->step/8) + 3*j);//.db为double数据类型,step类型为int,代表矩阵每行的字节数,因此要处以sizeof(double)  =8。
  mat(i,j,2):  *(mat->data.db + i*(mat->step/8) + 3*j+1);
  mat(i,j,3):  *(mat->data.db + i*(mat->step/8) + 3*j+2);
基本模式: *(mat->data.类型 + 行号*(该类型数据对应的一行的步长要按照该类型的长度来运算)+按照该类型来说的列数+所取的通道数)
2.
  mat(i,j,1):  ((double*)(mat->data.ptr+i*mat->step))[3*j];//ptr的类型为uchar*,step类型为int,代表矩阵每行的字节数。另外指针可以当做数组名,因此可以这样操作。
  mat(i,j,2):  ((double*)(mat->data.ptr+i*mat->step))[3*j+1];
  mat(i,j,3):  ((double*)(mat->data.ptr+i*mat->step))[3*j+2];
基本模式:((强转类型*)(mat->data.ptr+行号*mat->step))[3*列号+所取的通道数]
3.
mat(i,j,1):  *( (double*)(mat->data.ptr+i*mat->step) + 3*j );//根据以上也可以这样
总之就是C语言中的指针操作啦,要注意指针的类型,以及step的单位是字节就可以了。
4.运用CV_MAT_ELEM宏来访问
mat(i,j,3): CV_MAT_ELEM(mat,double,i,3*j+2)
该方法最方便。
 
另外,实验测试发现,mat中数据一般不支持类似于二维数值的双中括号访问,比如
mat->data.db[i][j] 是不支持的。而一般只支持单个中括号的访问,即:
mat->data.db[i*mat->step/sizeof(double)+j] </span>
 


CvMat 的遍历方法

如果遍历采用一个个取元素的方法,未免效率太慢。实际应用中,对矩阵的遍历常常采用指针遍历法,如下代码展示了对一个 CvMat 矩阵的遍历:

// 此头文件包含图像IO函数的声明
#include "highgui.h"
 // 此头文件包含基本的图像处理函数和高级计算机视觉算法
#include "cv.h"
#include <iostream>

#define R 10    // 矩阵行
#define C 10    // 矩阵列

using namespace std;

int main (void) {
    
    // 创建 R 行 C 列 32位单通道浮点类型的矩阵
    CvMat *m1 = cvCreateMat ( R, C, CV_32FC1 );
    
    // 赋值变量
    float s = 1.0f;
    // 遍历矩阵并赋值
    for (int i=0; i<R; i++) {
        // 获取矩阵每行的行首地址,下面的data成员必须先取其ptr成员计算完偏移地址后,再强制转化为目标数据类型。
        float *ptr = (float *)(m1->data.ptr + i * m1->step);
        // 遍历子一维数组
        for (int j=0; j<C; j++) {
            ptr[j] = s++;
        }
    }

    // 打印结果
    for (int i=0; i<m1->rows; i++) {
        float *ptr = (float *)(m1->data.ptr + i * m1->step);
        for (int j=0; j<m1->cols; j++) {
            printf("%7.2f", *ptr);
            ptr++;
        }
        cout << endl;
    }
    cout << endl << endl;

    getchar();

    return 1;
}


CV_32FC1解释:

如果用cv_32fc1,那么后面对该矩阵的输入输出的数据指针类型都应该是float,这在32位编译器上是32位浮点数,也就是单精度。如果用cv_64fc1,那么后面对该矩阵的输入输出的数据指针类型都应该是double,这在32位编译器上是64位浮点数,也就是双精度。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值