负对数似然(negative log-likelihood)

本文介绍了似然函数的概念及其在机器学习中的应用,包括离散和连续概率分布下的定义,并详细解释了最大似然估计、对数似然及负对数似然的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

negative log likelihood

似然函数(likelihood function)

Overview

在机器学习中,似然函数是一种关于模型中参数的函数。“似然性(likelihood)”和"概率(probability)"词意相似,但在统计学中它们有着完全不同的含义:概率用于在已知参数的情况下,预测接下来的观测结果;似然性用于根据一些观测结果,估计给定模型的参数可能值。

Probability is used to describe the plausibility of some data, given a value for the parameter. Likelihood is used to describe the plausibility of a value for the parameter, given some data.

​ —from wikipedia [ 3 ] ^[3] [3]

其数学形式表示为:

假设 X X X是观测结果序列,它的概率分布 f x f_{x} fx依赖于参数 θ \theta θ,则似然函数表示为

L ( θ ∣ x ) = f θ ( x ) = P θ ( X = x ) L(\theta|x)=f_{\theta}(x)=P_{\theta}(X=x) L(θx)=fθ

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值