人工智能在电子战识别中的应用

传统的EW电子战系统在应对现代威胁发射器的敏捷性方面存在困难。ML技术可以实时适应电子攻击(EA)技术,比人类操作员更快。EW系统需要对电磁(EM)频谱进行精确的态势感知。传统系统在同时监控大范围频谱方面能力有限。ML可以高效处理大量信号数据,提前识别关键模式并减少系统负载。

有效的EW操作需要根据任务和威胁环境平衡传感和干扰资源。传统的人员操作方法不足以应对越来越多的适应性对方目标。ML可以提供自主优化方法,实现实时决策。发射器识别将威胁、友方和中立发射区分开来。传统方法依赖于已知发射器特征的预定义库,这对于现代适应性威胁是不够的。ML方法,特别是特征学习方法,可以动态识别和分类新型发射。

515977e6b5f44baaa3ba5ec7b0e04190.png

自动调制识别(AMR)

AMR是一种技术,用于自动识别和分类无线电信号的调制类型。在电子战、通信和信号处理领域,识别信号的调制类型是至关重要的,因为它有助于解码、干扰或保护通信信号。

AMR涉及使用ML算法自动识别截获信号的调制方案,对于理解和对抗敌方通信和雷达系统至关重要。将ML应用于AMR可以显著提高信号识别的速度和准确性,从而增强电子战操作的效果。

文档中FEATHR项目探索了深度特征表示模型在AMR中的应用。特征学习模型可以识别和分类超出预定义标签的新调制类型。另外,三重损失是一种特征学习方法,通过学习调制类别之间的关系来聚类数据。这种方法允许分类已知调制和新观察到的例子。

自主资源分配

自主资源分配指的是在不依赖人工干预的情况下,系统能够根

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

偶尔摸点鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值