传统的EW电子战系统在应对现代威胁发射器的敏捷性方面存在困难。ML技术可以实时适应电子攻击(EA)技术,比人类操作员更快。EW系统需要对电磁(EM)频谱进行精确的态势感知。传统系统在同时监控大范围频谱方面能力有限。ML可以高效处理大量信号数据,提前识别关键模式并减少系统负载。
有效的EW操作需要根据任务和威胁环境平衡传感和干扰资源。传统的人员操作方法不足以应对越来越多的适应性对方目标。ML可以提供自主优化方法,实现实时决策。发射器识别将威胁、友方和中立发射区分开来。传统方法依赖于已知发射器特征的预定义库,这对于现代适应性威胁是不够的。ML方法,特别是特征学习方法,可以动态识别和分类新型发射。
自动调制识别(AMR)
AMR是一种技术,用于自动识别和分类无线电信号的调制类型。在电子战、通信和信号处理领域,识别信号的调制类型是至关重要的,因为它有助于解码、干扰或保护通信信号。
AMR涉及使用ML算法自动识别截获信号的调制方案,对于理解和对抗敌方通信和雷达系统至关重要。将ML应用于AMR可以显著提高信号识别的速度和准确性,从而增强电子战操作的效果。
文档中FEATHR项目探索了深度特征表示模型在AMR中的应用。特征学习模型可以识别和分类超出预定义标签的新调制类型。另外,三重损失是一种特征学习方法,通过学习调制类别之间的关系来聚类数据。这种方法允许分类已知调制和新观察到的例子。
自主资源分配
自主资源分配指的是在不依赖人工干预的情况下,系统能够根