使用ollama跨平台部署大模型

Ollama是一个支持多种大语言模型的工具,提供模型仓库、加速、API接口和多模型并行处理。文章介绍了其特点、部署步骤(包括Linux、MacOS、Windows和NvidiaJetson)以及模型加载、创建和转换的方法。

Ollama介绍

官方网站:https://ollama.com/
官方Github Repo:https://github.com/ollama/ollama
官方自我介绍:Get up and running with Llama 2, Mistral, Gemma, and other large language models.

Why Ollama

1、有模型仓库,一行命令拉取模型运行
2、llama.cpp加速,支持类llama的大量模型。
3、发布api,便于集成各种web ui
4、多模型并行,便于模型测评与切换
5、支持LLVA视觉模型
6、支持Nvidia、AMD显卡加速
7、adapt加载

缺点

1、必须使用gguf模型,经过量化
2、对于pt,safetensor模型需要进行转化
3、需要使用Modelfile配置chat模板,难以使用call tool

Ubuntu Linux X86平台部署

在这里插入图片描述

对于Linux平台,通过curl打开install.sh脚本下载。脚本的核心内容是下载ollama二进制文件。脚本文件自动下载bin包,注册ollama系统服务,创建ollama用户,检测显卡驱动。
命令执行完成后即可通过ollama指令操作服务。

$ ollama -h
Large language model runner

Usage:
  ollama [flags]
  ollama [command]

Available Commands:
  serve       Start ollama
  create      Create a model from a Modelfile
  show        Show information 
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值