一文理解CatBoost!

CatBoost是Yandex开源的机器学习库,专为处理类别型特征设计,尤其在准确率和处理高基数类别特征上表现出色。它采用目标变量统计、特征组合和排序提升等方法,有效降低梯度偏差和预测偏移。CatBoost还支持GPU加速和自定义损失函数,适用于多种任务,如分类和回归。通过实例展示了CatBoost在处理类别型特征时的代码实现。
摘要由CSDN通过智能技术生成

在这里插入图片描述

1. CatBoost简介

CatBoost是俄罗斯的搜索巨头Yandex在2017年开源的机器学习库,是Boosting族算法的一种。CatBoost和XGBoost、LightGBM并称为GBDT的三大主流神器,都是在GBDT算法框架下的一种改进实现。XGBoost被广泛的应用于工业界,LightGBM有效的提升了GBDT的计算效率,而Yandex的CatBoost号称是比XGBoost和LightGBM在算法准确率等方面表现更为优秀的算法。

CatBoost是一种基于对称决策树(oblivious trees)为基学习器实现的参数较少、支持类别型变量和高准确性的GBDT框架,主要解决的痛点是高效合理地处理类别型特征,这一点从它的名字中可以看出来,CatBoost是由Categorical和Boosting组成。此外,CatBoost还解决了梯度偏差(Gradient Bias)以及预测偏移(Prediction shift)的问题,从而减少过拟合的发生,进而提高算法的准确性和泛化能力。

与XGBoost、LightGBM相比,CatBoost的创新点有:

  • 嵌入了自动将类别型特征处理为数值型特征的创新算法。首先对categorical features做一些统计,计算某个类别特征(category)出现的频率,之后加上超参数,生成新的数值型特征(numerical features)。
  • Catboost还使用了组合类别特征,可以利用到特征之间的联系,这极大的丰富了特征维度。
  • 采用排序提升的方法对抗训练集中的噪声点,从而避免梯度估计的偏差,进而解决预测偏移的问题。
  • 采用了完全对称树作为基模型。

2. 类别型特征

2.1 类别型特征的相关工作

所谓类别型特征,即这类特征不是数值型特征,而是离散的集合,比如省份名(山东、山西、河北等),城市名(北京、上海、深圳等),学历(本科、硕士、博士等)。在梯度提升算法中,最常用的是将这些类别型特征转为数值型来处理,一般类别型特征会转化为一个或多个数值型特征。

如果某个类别型特征基数比较低(low-cardinality features),即该特征的所有值去重后构成的集合元素个数比较少,一般利用One-hot编码方法将特征转为数值型。One-hot编码可以在数据预处理时完成,也可以在模型训练的时候完成,从训练时间的角度,后一种方法的实现更为高效,CatBoost对于基数较低的类别型特征也是采用后一种实现。

显然,在高基数类别型特征(high cardinality features) 当中,比如 user ID,这种编码方式会产生大量新的特征,造成维度灾难。一种折中的办法是可以将类别分组成有限个的群体再进行One-hot编码。一种常被使用的方法是根据目标变量统计(Target Statistics,以下简称TS)进行分组,目标变量统计用于估算每个类别的目标变量期望值。甚至有人直接用TS作为一个新的数值型变量来代替原来的类别型变量。重要的是,可以通过对TS数值型特征的阈值设置,基于对数损失、基尼系数或者均方差,得到一个对于训练集而言将类别一分为二的所有可能划分当中最优的那个。在LightGBM当中,类别型特征用每一步梯度提升时的梯度统计(Gradient Statistics,以下简称GS)来表示。虽然为建树提供了重要的信息,但是这种方法有以下两个缺点:

  • 增加计算时间,因为需要对每一个类别型特征,在迭代的每一步,都需要对GS进行计算;
  • 增加存储需求,对于一个类别型变量,需要存储每一次分离每个节点的类别;

为了克服这些缺点,LightGBM以损失部分信息为代价将所有的长尾类别归为一类,作者声称这样处理高基数类别型特征时比One-hot编码还是好不少。不过如果采用TS特征,那么对于每个类别只需要计算和存储一个数字。

因此,采用TS作为一个新的数值型特征是最有效、信息损失最小的处理类别型特征的方法。TS也被广泛应用在点击预测任务当中,这个场景当中的类别型特征有用户、地区、广告、广告发布者等。接下来我们着重讨论TS,暂时将One-hot编码和GS放一边。

2.2 目标变量统计(Target Statistics)

CatBoost算法的设计初衷是为了更好的处理GBDT特征中的categorical features。在处理 GBDT特征中的categorical features的时候,最简单的方法是用 categorical feature 对应的标签的平均值来替换。在决策树中,标签平均值将作为节点分裂的标准。这种方法被称为 Greedy Target-based Statistics , 简称 Greedy TS,用公式来表达就是:

这种方法有一个显而易见的缺陷,就是通常特征比标签包含更多的信息,如果强行用标签的平均值来表示特征的话,当训练数据集和测试数据集数据结构和分布不一样的时候会出条件偏移问题。

一个标准的改进 Greedy TS的方式是添加先验分布项,这样可以减少噪声和低频率类别型数据对于数据分布的影响: 其中p是添加的先验项,α通常是大于 0 的权重系数。添加先验项是一个普遍做法,针对类别数较少的特征,它可以减少噪声数据。对于回归问题,一般情况下,先验项可取数据集label的均值。对于二分类,先验项是正例的先验概率。利用多个数据集排列也是有效的,但是,如果直接计算可能导致过拟合。CatBoost利用了一个比较新颖的计算叶子节点值的方法,这种方式(oblivious trees,对称树)可以避免多个数据集排列中直接计算会出现过拟合的问题。

当然,在论文《CatBoost: unbiased boosting with categorical features》中,还提到了其它几种改进Greedy TS的方法,分别有:Holdout TS、Leave-one-out TS、Ordered TS。我这里就不再翻译论文中的这些方法了,感兴趣的同学可以自己翻看一下原论文。

2.3 特征组合

值得注意的是几个类别型特征的任意组合都可视为新的特征。例如,在音乐推荐应用中,我们有两个类别型特征:用户ID和音乐流派。如果有些用户更喜欢摇滚乐,将用户ID和音乐流派转换为数字特征时,根据上述这些信息就会丢失。结合这两个特征就可以解决这个问题,并且可以得到一个新的强大的特征。然而,组合的数量会随着数据集中类别型特征的数量成指数增长,因此不可能在算法中考虑所有组合。为当前树构造新的分割点时,CatBoost会采用贪婪的策略考虑组合。对于树的第一次分割,不考虑任何组合。对于下一个分割,CatBoost将当前树的所有组合、类别型特征与数据集中的所有类别型特征相结合,并将新的组合类别型特征动态地转换为数值型特征。CatBoost还通过以下方式生成数值型特征和类别型特征的组合:树中选定的所有分割点都被视为具有两个值的类别型特征,并像类别型特征一样被进行组合考虑。

2.4 CatBoost处理Categorical features总结

  • 首先会计算一些数据的statistics。计算某个category出现的频率,加上超参数,生成新的numerical features。这一策略要求同一标签数据不能排列在一起(即先全是0之后全是1这种方式),训练之前需要打乱数据集。
  • 第二,使用数据的不同排列(实际上是4个)。在每一轮建立树之前,先扔一轮骰子,决定使用哪个排列来生成树。
  • 第三,考虑使用categorical features的不同组合。例如颜色和种类组合起来,可以构成类似于blue dog这样的特征。当需要组合的categorical features变多时,CatBoost只考虑一部分combinations。在选择第一个节点时,只考虑选择一个特征,例如A。在生成第二个节点时,考虑A和任意一个categorical feature的组合,选择其中最好的。就这样使用贪心算法生成combinations。
  • 第四,除非向gender这种维数很小的情况,不建议自己生成One-hot编码向量,最好交给算法来处理。

在这里插入图片描述

3. 克服梯度偏差

对于学习CatBoost克服梯度偏差的内容,我提出了三个问题:

  • 为什么会有梯度偏差?
  • 梯度偏差造成了什么问题?
  • 如何解决梯度偏差?

CatBoost和所有标准梯度提升算法一样,都是通过构建新树来拟合当前模型的梯度。然而,所有经典的提升算法都存在由有偏的点态梯度估计引起的过拟合问题。在每个步骤中使用的梯度都使用当前模型中的相同的数据点来估计,这导致估计梯度在特征空间的任何域中的分布与该域中梯度的真实分布相比发生了偏移,从而导致过拟合。为了解决这个问题,CatBoost对经典的梯度提升算法进行了一些改进,简要介绍如下。

许多利用GBDT技术的算法(例如,XGBoost、LightGBM),构建下一棵树分为两个阶段:选择树结构和在树结构固定后计算叶子节点的值。为了选择最佳的树结构,算法通过枚举不同的分割,用这些分割构建树,对得到的叶子节点计算值,然后对得到的树计算评分,最后选择最佳的分割。两个阶段叶子节点的值都是被当做梯度或牛顿步长的近似值来计算。在CatBoost中,第一阶段采用梯度步长的无偏估计,第二阶段使用传统的GBDT方案执行。既然原来的梯度估计是有偏的,那么怎么能改成无偏估计呢?
在这里插入图片描述
在这里插入图片描述

4. 预测偏移和排序提升

4.1 预测偏移

对于学习预测偏移的内容,我提出了两个问题:

  • 什么是预测偏移?
  • 用什么办法解决预测偏移问题?

预测偏移(Prediction shift)是由梯度偏差造成的。在GDBT的每一步迭代中, 损失函数使用相同的数据集求得当前模型的梯度, 然后训练得到基学习器, 但这会导致梯度估计偏差, 进而导致模型产生过拟合的问题。CatBoost通过采用排序提升 (Ordered boosting) 的方式替换传统算法中梯度估计方法,进而减轻梯度估计的偏差,提高模型的泛化能力。下面我们对预测偏移进行详细的描述和分析。

首先来看下GBDT的整体迭代过程:

GBDT算法是通过一组分类器的串行迭代,最终得到一个强学习器,以此来进行更高精度的分类。它使用了前向分布算法,弱学习器使用分类回归树(CART)。

在这里插入图片描述

4.2 排序提升

为了克服预测偏移问题,CatBoost提出了一种新的叫做Ordered boosting的算法。

在这里插入图片描述
在这里插入图片描述

5. 快速评分

CatBoost使用对称树(oblivious trees)作为基预测器。在这类树中,相同的分割准则在树的整个一层上使用。这种树是平衡的,不太容易过拟合。梯度提升对称树被成功地用于各种学习任务中。在对称树中,每个叶子节点的索引可以被编码为长度等于树深度的二进制向量。这在CatBoost模型评估器中得到了广泛的应用:我们首先将所有浮点特征、统计信息和独热编码特征进行二值化,然后使用二进制特征来计算模型预测值。

6. 基于GPU实现快速训练

  • 密集的数值特征。 对于任何GBDT算法而言,最大的难点之一就是搜索最佳分割。尤其是对于密集的数值特征数据集来说,该步骤是建立决策树时的主要计算负担。
### 回答1: Linux内核是一种开源的操作系统内核,是Linux操作系统的核心组成部分。它提供了操作系统与硬件之间的抽象层,负责管理系统的资源、调度任务、提供驱动程序等功能。 Linux内核采用分层的架构,包括硬件抽象层、系统调用层、进程管理层、文件系统层和网络层等。硬件抽象层负责将不同硬件设备的接口统一起来,使得上层的软件可以方便地与硬件进行通信。系统调用层提供了一组API供用户进程调用,如文件操作、网络通信等。进程管理层负责进程的创建、销毁以及调度等任务。文件系统层负责文件的管理和存储。网络层负责网络协议的实现和网络通信。 Linux内核的工作原理可以简单概括为以下几个关键步骤。首先,当一台计算机启动时,BIOS会加载内核映像到内存中,并执行启动代码。然后,内核初始化各种数据结构、驱动程序和关键服务。接下来,内核创建一个初始的用户空间进程,称为init进程。init进程是所有其他进程的祖先进程。在此之后,内核根据调度算法来决定哪个进程可以使用CPU,并依次执行。同时,内核会提供一个中断机制,以便处理硬件事件的优先级。 内核还提供了许多系统调用供用户进程调用,以实现对各种功能的访问。当用户进程需要操作文件、创建进程或进行网络通信时,会通过系统调用将请求传递给内核,由内核代表用户进程执行相应的操作。内核通过调度算法来分配CPU时间片,并通过虚拟内存管理来管理内存资源的分配和回收。 总而言之,Linux内核是一个高度可配置和模块化的操作系统内核,通过分层架构和系统调用机制实现了对硬件的抽象和对用户进程的管理。了解Linux内核的架构和工作原理,有助于深入理解Linux操作系统以及开发和调试相关应用程序。 ### 回答2: Linux是一种开源的操作系统内核,其设计目标是为了在不同的计算机硬件平台上提供高效的、稳定的和安全的操作系统服务。 Linux内核的架构可以分为三个主要部分:进程管理、内存管理和文件系统管理。 在进程管理方面,Linux内核使用了多任务处理技术,可以同时运行多个进程。每个进程都有独立的地址空间和资源,通过调度算法可以合理分配CPU时间片,优化系统的响应速度和资源利用率。 在内存管理方面,Linux内核使用了虚拟内存技术,将物理内存和逻辑内存进行了映射,使得每个进程都有独立的地址空间。当物理内存不足时,Linux内核会通过页面置换算法将暂时不使用的页写入磁盘交换空间,以释放物理内存供其他进程使用。 在文件系统管理方面,Linux内核支持多种文件系统,包括传统的ext3和ext4文件系统,以及现代的Btrfs和XFS文件系统。它负责文件的读写操作,以及文件的权限控制和磁盘空间的管理。 Linux内核的工作原理可以简单概括为以下几个步骤:首先,启动引导程序将内核加载到内存中,并进行初始化。然后,内核分配一部分内存作为内核空间,用于存放内核代码和数据结构。接着,内核根据系统的硬件配置进行设备的初始化和驱动程序的加载。之后,内核根据系统的启动参数和配置文件进行一系列的初始化工作,包括启动系统服务和加载用户程序。最后,内核进入主循环,不断地处理中断、调度进程、管理内存和文件系统,以提供稳定的操作系统服务。 总之,Linux内核是一个复杂而高效的软件系统,它通过进程管理、内存管理和文件系统管理等功能,实现了操作系统的基本功能。了解Linux内核的架构和工作原理,有助于我们更好地理解和使用这个优秀的开源操作系统。 ### 回答3: Linux内核是一个开放源代码的操作系统内核,由一个核心程序和一组通用的系统工具组成。它是Linux操作系统的核心,负责处理硬件设备、管理系统资源、实现进程管理、文件系统和网络功能等。 Linux内核的架构可以分为两个层次:用户空间和内核空间。用户空间包括用户应用程序,如图形界面、终端程序等,它们通过系统调用接口与内核进行通信。内核空间包括内核核心的数据结构和程序,用于管理和控制硬件资源。 Linux内核的工作原理可以概括为以下几个方面: 1. 进程管理:内核负责创建、调度和终止进程。它使用进程描述符(task_struct)来跟踪进程的状态和资源使用情况,并根据调度算法分配CPU时间片给不同的进程。 2. 内存管理:内核负责管理系统的物理内存和虚拟内存。物理内存管理包括内存分配和释放,虚拟内存管理包括页面置换和页面回写等策略,以优化内存的使用效率。 3. 文件系统:内核提供文件系统接口,管理文件和目录的创建、读写和删除等操作。它通过虚拟文件系统层(VFS)将不同的文件系统统一管理,如ext4、NTFS等。 4. 设备驱动:内核提供了访问硬件设备的接口,通过设备驱动程序与硬件交互。不同的硬件设备需要不同的驱动程序,如网卡、显卡、声卡等。 5. 网络功能:内核提供TCP/IP协议栈和网络设备驱动程序,用于实现网络通信功能。它提供网络连接的建立、数据传输和断开等功能,支持各种网络协议,如HTTP、FTP、SSH等。 总的来说,Linux内核是一个非常复杂且功能强大的软件,它负责管理计算机的各种资源和提供操作系统的各种功能。通过深入理解其架构和工作原理,我们可以更好地理解和使用Linux操作系统。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

a useful man

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值