K-means聚类自定义距离计算

在K-means聚类中,若要使用自定义的距离函数,scikit-learn和spark并不支持。你可以选择自己实现算法,参考相关文档和代码仓库,或者寻找支持自定义距离的开源项目,如nltk和tslearn库,特别是对于时间序列数据,tslearn提供了dtw和softdtw等距离度量方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果你想自己定义一个距离的function的话,scikit-learn是不行的,只支持Euclidean distance

如果你觉得spark可以的话,实际上sprk的k-means也是不行的,好一点的是支持Euclidean distance,还支持cosine distance

如果你想自己定义function处理的话,二个方法:

1、自己实现算法,可参考的文档:

一个简单的讲解

https://medium.com/machine-learning-algorithms-from-scratch/k-means-clustering-from-scratch-in-python-1675d38eee42

一个简单的代码:

https://github.com/pavankalyan1997/Machine-learning-without-any-libraries/tree/master/2.Clustering/1.K_Means_Clustering

这个代码仓库有很多实现不依赖于第三方库

stackoverflow的高赞的回答也实现了一个简单的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

a useful man

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值