多目标决策问题1.1.1:线性加权法——熵权法确定权重

本文介绍了多目标决策问题中的线性加权法,特别是熵权法在确定权重中的作用。通过熵权法,可以量化不确定性和信息熵来合理分配各目标的权重,从而在复杂决策环境中做出更科学的选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多目标决策问题是目前数学建模中比较普遍的一类问题,
此类问题要求我们满足多个目标函数最优与决策变量的线性约束条件或非线性约束条件下进行求解,
多目标决策问题主要有主要目标法、线性加权法、分层序列法、步骤法(Stem法),
本篇主要着重讲线性加权法。
线性加权法的特点主要是实现了将多个目标函数通过线性加权的方式集成到了单个目标函数,
那么问题就转化为了一般性的线性规划类问题。线性加权法中也可以将指标定性与定量结合,
一定程度上增加了主观性因素。
但笔者认为最关键的还是确定各个指标的权重,
而熵权法与基于三角模糊数的层次分析法,模糊层次分析法FAHP,主成分分析法(PVC),
主观赋权法(不提倡)是笔者看来比较好的确定权重的方法。
此处先讲熵权法来确定权重,熵权法可用于任何评价类问题的指标权重确定,
可以剔除贡献率较低的指标,可以说有且仅有此优点。
(1)通过max-min极差标准化,z-score零均方差标准化处理将多个指标实现归一化处理
(2)求解信息熵值
(3)根据信息熵求解各个指标对应权重
笔者写了一个比较通用的代码
clc;clear;
    load data
    %或者使用data=xlsread('.xls'),使用txt文件导入也是可以的
    x=[];%此处可以将data处的数据进行导入
    lamda=[
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

a useful man

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值