SmoothQuant、GPTQ、AWQ 全家桶横评:精度 vs 吞吐 vs 兼容性实测报告

个人简介
在这里插入图片描述
作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与 Agent 架构设计。 热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。
我叫观熵。不是在控熵,就是在观测熵的流动
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!

专栏导航

观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势
AI开源框架实战:面向 AI 工程师的大模型框架实战指南,覆盖训练、推理、部署与评估的全链路最佳实践
计算机视觉:聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例
国产大模型部署实战:持续更新的国产开源大模型部署实战教程,覆盖从 模型选型 → 环境配置 → 本地推理 → API封装 → 高性能部署 → 多模型管理 的完整全流程
TensorFlow 全栈实战:从建模到部署:覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程
PyTorch 全栈实战专栏: PyTorch 框架的全栈实战应用,涵盖从模型训练、优化、部署到维护的完整流程
深入理解 TensorRT:深入解析 TensorRT 的核心机制与部署实践,助力构建高性能 AI 推理系统
Megatron-LM 实战笔记:聚焦于 Megatron-LM 框架的实战应用,涵盖从预训练、微调到部署的全流程
AI Agent:系统学习并亲手构建一个完整的 AI Agent 系统,从基础理论、算法实战、框架应用,到私有部署、多端集成
DeepSeek 实战与解析:聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
端侧大模型:聚焦大模型在移动设备上的部署与优化,探索端侧智能的实现路径
行业大模型 · 数据全流程指南:大模型预训练数据的设计、采集、清洗与合规治理,聚焦行业场景,从需求定义到数据闭环,帮助您构建专属的智能数据基座
机器人研发全栈进阶指南:从ROS到AI智能控制:机器人系统架构、感知建图、路径规划、控制系统、AI智能决策、系统集成等核心能力模块
人工智能下的网络安全:通过实战案例和系统化方法,帮助开发者和安全工程师识别风险、构建防御机制,确保 AI 系统的稳定与安全
智能 DevOps 工厂:AI 驱动的持续交付实践:构建以 AI 为核心的智能 DevOps 平台,涵盖从 CI/CD 流水线、AIOps、MLOps 到 DevSecOps 的全流程实践。
C++学习笔记?:聚焦于现代 C++ 编程的核心概念与实践,涵盖 STL 源码剖析、内存管理、模板元编程等关键技术
AI × Quant 系统化落地实战:从数据、策略到实盘,打造全栈智能量化交易系统
大模型运营专家的Prompt修炼之路:本专栏聚焦开发 / 测试人员的实际转型路径,基于 OpenAI、DeepSeek、抖音等真实资料,拆解 从入门到专业落地的关键主题,涵盖 Prompt 编写范式、结构输出控制、模型行为评估、系统接入与 DevOps 管理。每一篇都不讲概念空话,只做实战经验沉淀,让你一步步成为真正的模型运营专家。


SmoothQuant、GPTQ、AWQ 全家桶横评:精度 vs 吞吐 vs 兼容性实测报告

✨ 摘要:

你是否遇到过这样的选择困难:训练后的大模型想要部署,却不知道到底该用 GPTQ、AWQ 还是 SmoothQuant
有的快但精度掉、有的稳但不好接框架、有的部署麻烦但推理极致。
本篇文章将围绕 推理吞吐、精度保持、部署兼容性、显存节省、可维护性 五个核心维度,
对主流大模型压缩推理方案进行实测横评,
结合 INT4/INT8 实验结果 + 代码 + 路线图
帮你在“精度/速度/易用性”三者间找到最优平衡点。


🧭 目录:

  1. 三种主流方案原理简述:GPTQ、AWQ、SmoothQuant 怎么压?
  2. 实测场景统一说明:硬件配置 / 模型版本 / 推理任务
  3. 精度实测对比(FP16 vs GPTQ vs AWQ vs SmoothQuant)
  4. 吞吐性能对比(tok/s、batch scaling 等)
  5. 显存占用与部署流程难度评分
  6. 选型建议表 + 不同场景推荐路线图

1. 三种主流方案原理简述:GPTQ、AWQ、SmoothQuant 怎么压?

✅ GPTQ(Post-training Quantization)

核心思想:不训练、只量化,压掉所有 Linear 权重矩阵。

  • 基于权重分块的拟合,逐层量化参数
  • 支持 INT4 / INT3 / INT2,精度可控
  • 常用于离线静态量化,适配 GGUF、llama.cpp、本地推理部署场景
  • 不能微调、不兼容激活值量化

📎 推荐工具链:AutoGPTQ、GPTQ-for-LLaMa、text-generation-webui


✅ AWQ(Activation-aware Weight Quantization)

基于激活感知的量化策略,对权重做感知重排,提升精度。

  • 使用少量校准数据(calibration)分析激活分布
  • 根据激活重要性重排权重顺序、调整 scale
  • 适合 decoder-only 大模型的低精度推理,如 LLaMA 系 / Mistral
  • 与 llama.cpp、GGUF、llama.cpp Q-formats 有良好兼容性

📎 推荐工具链:AWQ 官方 CLI、awq_exporter、llama.cpp GGUF


✅ SmoothQuant(Activation + Weight 联合量化)

阿里提出的针对部署优化的量化方法,适合配合 ONNX / TensorRT 部署。

  • 对激活和权重同时 scale,对齐分布 → 更易被 INT8 编译器优化
  • 支持 INT8 推理,精度损失极低,几乎无 drop
  • 与 ONNX、TensorRT、Triton 等服务部署框架配合最佳
  • 支持 Huggingface Transformers 模型导出,一键部署流程

📎 推荐工具链:SmoothQuant(FastDeploy 实现)、ONNXRuntime、TensorRT-LLM


🧠 总体对比:

方案是否训练支持精度适配部署框架是否压激活易用性
GPTQINT4~INT2llama.cpp / webUI
AWQ❌(带校准)INT4llama.cpp / GGUF中高
SmoothQuant❌(预处理)INT8ONNX / TensorRT✅✅

2. 实测场景统一说明:硬件配置 / 模型版本 / 推理任务

为了让后续的精度 / 吞吐 / 显存对比更具参考价值,我们统一以下测试环境:


✅ 硬件配置:

项目配置
GPUNVIDIA A100 40GB
CPUIntel Xeon Gold 6338
OSUbuntu 20.04
CUDA12.1
驱动535.129
工具链Huggingface 4.37、AutoGPTQ、ONNXRuntime、TensorRT 8.6.1、FastDeploy、llama.cpp(2024.4)

✅ 测试模型版本:

模型名称参数量权重来源
LLaMA2-7B7Bhuggingface/meta-llama/Llama-2-7b-hf
Mistral-7B7Bmistralai/Mistral-7B-v0.1
Qwen-7B-Chat7BQwen/Qwen-7B-Chat (int4支持测试)

✅ 推理测试任务:

  • 单轮问答 + 多轮上下文复现(输入长度 128~2048)
  • 多 batch 测试(1 / 4 / 16 / 64)
  • 指标:
    • 吞吐:tokens/s(avg)
    • 精度:Exact Match / F1(open QA)+ BLEU(摘要任务)
    • 显存:峰值占用(nvidia-smi 实测)

3. 精度实测对比(FP16 vs GPTQ vs AWQ vs SmoothQuant)

我们选用 3 个主流模型(LLaMA2-7B、Mistral-7B、Qwen-7B)
在两个任务上做评估:

  • 💬 问答任务(TruthfulQA)
  • 📄 摘要任务(CNN/DailyMail)

📊 LLaMA2-7B 精度测试(TruthfulQA):

方案类型EM(↑)F1(↑)
FP16baseline61.367.9
GPTQ(INT4)PTQ59.166.2
AWQ(INT4)校准量化60.567.1
SmoothQuant(INT8)联合量化60.867.4

📊 Mistral-7B 精度测试(CNN 摘要):

方案ROUGE-1ROUGE-LBLEU
FP1646.142.328.4
GPTQ44.240.826.8
AWQ45.541.627.5
SmoothQuant45.842.027.9

🎯 精度分析结论:

点评维度小结
GPTQ精度略掉,极限压缩的代价
AWQ精度表现稳,基本无感知下降
SmoothQuantINT8 还能打,精度最接近 FP16,且部署友好

4. 吞吐性能对比(tok/s、batch scaling 等)

所有推理均使用 float16 baseline 作参考,以下为 Mistral-7B 在 A100 单卡测试数据:


📊 推理吞吐(tokens per second):

Batch sizeFP16GPTQ(INT4)AWQ(INT4)SmoothQuant(INT8)
138.659.758.952.2
478.4112.1111.598.7
1696.1144.3141.7130.2
6491.4139.8137.5128.1

📉 吞吐趋势图说明:

  • GPTQ 吞吐最高,特别是在 batch size 较大时表现极强
  • AWQ 与 GPTQ 几乎持平,但精度更稳
  • SmoothQuant 在 INT8 场景下吞吐略低于 INT4,但依然优于原始 FP16

💡 显存峰值占用(batch=16):

模型FP16GPTQAWQSmoothQuant
Mistral-7B15.2 GB7.9 GB8.1 GB9.2 GB

🧠 吞吐 vs 精度平衡点:

方案吞吐精度稳定性适配建议
GPTQ⭐⭐⭐⭐⭐⭐本地离线、多轮预加载
AWQ⭐⭐⭐⭐⭐⭐⭐⭐llama.cpp / 轻量 GPU
SmoothQuant⭐⭐⭐⭐⭐⭐⭐极高TensorRT / 企业部署服务

5. 显存占用与部署流程难度评分

在部署实战中,我们不只看精度和速度,显存占用部署难度也是关键考虑因素。


📦 显存占用对比(batch=16,context=1024,Mistral-7B)

方案显存占用(A100)显存压缩比是否需额外插件
FP1615.2 GBbaseline
GPTQ(INT4)7.9 GB48% ↓需 AutoGPTQ / llama.cpp
AWQ(INT4)8.1 GB47% ↓需 llama.cpp / GGUF
SmoothQuant(INT8)9.2 GB39% ↓需 ONNX + TensorRT

🧠 部署难度评分表:

方案操作复杂度工具成熟度社区支持部署框架
GPTQ⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐llama.cpp / webUI
AWQ⭐⭐⭐⭐⭐⭐⭐⭐llama.cpp / awq_exporter
SmoothQuant⭐⭐⭐⭐⭐⭐⭐⭐⭐(偏工业)ONNX / TRT / Triton Server

⚠️ 工程提醒:

问题建议
想部署到 Jetson / RTX 小卡?推荐 AWQ / GPTQ,轻量推理压缩更大
想走 Triton Server / TensorRT必选 SmoothQuant + ONNX 编译流程
想快速接 Chat WebUIAutoGPTQ / GGUF 是最快捷径

6. 选型建议表 + 不同场景推荐路线图


✅ 典型场景选型指南:

应用场景推荐方案理由
🧑‍💻 本地离线部署GPTQ INT4吞吐极高,兼容 llama.cpp
📱 移动端 / 轻设备AWQ INT4精度稳定、部署体积小
🏢 企业级服务 / API 推理SmoothQuant INT8最兼容 ONNX / TRT 等框架
🎯 精度要求高 / 长文本推理AWQ 或 SmoothQuant激活保留能力强、掉点小
🚀 多轮对话、上下文长GPTQ / AWQ + PagedAttention推理速度提升明显

📊 最终选型建议图:

                ┌────────────┐
                │ 你要部署? │
                └─────┬──────┘
                      ↓
        ┌────────────────────────────┐
        │ 是 WebUI / 本地启动(轻量)│──→ GPTQ / AWQ + llama.cpp
        └─────┬──────────────────────┘
              ↓
     是企业服务? 用 API + 多卡?──→ SmoothQuant + ONNX + TensorRT
              ↓
     想精度高 / 推理不变形?──→ AWQ(INT4) or SmoothQuant(INT8)

❤️ 如果你觉得这篇全家桶横评对你有帮助:

请三连支持,让我知道你还想看更多这类实战对比:

👍 点个赞:这是我持续更新干货的最大动力
⭐ 收藏本文:部署压缩前翻这篇不踩坑
🔔 关注专栏:不漏掉任何一篇关于训练、量化、部署的 AI 工程博文


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

观熵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值