个人简介
作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与 Agent 架构设计。 热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。
我叫观熵。不是在控熵,就是在观测熵的流动
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!
专栏导航
观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势
AI开源框架实战:面向 AI 工程师的大模型框架实战指南,覆盖训练、推理、部署与评估的全链路最佳实践
计算机视觉:聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例
国产大模型部署实战:持续更新的国产开源大模型部署实战教程,覆盖从 模型选型 → 环境配置 → 本地推理 → API封装 → 高性能部署 → 多模型管理 的完整全流程
TensorFlow 全栈实战:从建模到部署:覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程
PyTorch 全栈实战专栏: PyTorch 框架的全栈实战应用,涵盖从模型训练、优化、部署到维护的完整流程
深入理解 TensorRT:深入解析 TensorRT 的核心机制与部署实践,助力构建高性能 AI 推理系统
Megatron-LM 实战笔记:聚焦于 Megatron-LM 框架的实战应用,涵盖从预训练、微调到部署的全流程
AI Agent:系统学习并亲手构建一个完整的 AI Agent 系统,从基础理论、算法实战、框架应用,到私有部署、多端集成
DeepSeek 实战与解析:聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
端侧大模型:聚焦大模型在移动设备上的部署与优化,探索端侧智能的实现路径
行业大模型 · 数据全流程指南:大模型预训练数据的设计、采集、清洗与合规治理,聚焦行业场景,从需求定义到数据闭环,帮助您构建专属的智能数据基座
机器人研发全栈进阶指南:从ROS到AI智能控制:机器人系统架构、感知建图、路径规划、控制系统、AI智能决策、系统集成等核心能力模块
人工智能下的网络安全:通过实战案例和系统化方法,帮助开发者和安全工程师识别风险、构建防御机制,确保 AI 系统的稳定与安全
智能 DevOps 工厂:AI 驱动的持续交付实践:构建以 AI 为核心的智能 DevOps 平台,涵盖从 CI/CD 流水线、AIOps、MLOps 到 DevSecOps 的全流程实践。
C++学习笔记?:聚焦于现代 C++ 编程的核心概念与实践,涵盖 STL 源码剖析、内存管理、模板元编程等关键技术
AI × Quant 系统化落地实战:从数据、策略到实盘,打造全栈智能量化交易系统
大模型运营专家的Prompt修炼之路:本专栏聚焦开发 / 测试人员的实际转型路径,基于 OpenAI、DeepSeek、抖音等真实资料,拆解 从入门到专业落地的关键主题,涵盖 Prompt 编写范式、结构输出控制、模型行为评估、系统接入与 DevOps 管理。每一篇都不讲概念空话,只做实战经验沉淀,让你一步步成为真正的模型运营专家。
SmoothQuant、GPTQ、AWQ 全家桶横评:精度 vs 吞吐 vs 兼容性实测报告
✨ 摘要:
你是否遇到过这样的选择困难:训练后的大模型想要部署,却不知道到底该用 GPTQ、AWQ 还是 SmoothQuant?
有的快但精度掉、有的稳但不好接框架、有的部署麻烦但推理极致。
本篇文章将围绕 推理吞吐、精度保持、部署兼容性、显存节省、可维护性 五个核心维度,
对主流大模型压缩推理方案进行实测横评,
结合 INT4/INT8 实验结果 + 代码 + 路线图,
帮你在“精度/速度/易用性”三者间找到最优平衡点。
🧭 目录:
- 三种主流方案原理简述:GPTQ、AWQ、SmoothQuant 怎么压?
- 实测场景统一说明:硬件配置 / 模型版本 / 推理任务
- 精度实测对比(FP16 vs GPTQ vs AWQ vs SmoothQuant)
- 吞吐性能对比(tok/s、batch scaling 等)
- 显存占用与部署流程难度评分
- 选型建议表 + 不同场景推荐路线图
1. 三种主流方案原理简述:GPTQ、AWQ、SmoothQuant 怎么压?
✅ GPTQ(Post-training Quantization)
核心思想:不训练、只量化,压掉所有 Linear 权重矩阵。
- 基于权重分块的拟合,逐层量化参数
- 支持 INT4 / INT3 / INT2,精度可控
- 常用于离线静态量化,适配 GGUF、llama.cpp、本地推理部署场景
- 不能微调、不兼容激活值量化
📎 推荐工具链:AutoGPTQ、GPTQ-for-LLaMa、text-generation-webui
✅ AWQ(Activation-aware Weight Quantization)
基于激活感知的量化策略,对权重做感知重排,提升精度。
- 使用少量校准数据(calibration)分析激活分布
- 根据激活重要性重排权重顺序、调整 scale
- 适合 decoder-only 大模型的低精度推理,如 LLaMA 系 / Mistral
- 与 llama.cpp、GGUF、llama.cpp Q-formats 有良好兼容性
📎 推荐工具链:AWQ 官方 CLI、awq_exporter、llama.cpp GGUF
✅ SmoothQuant(Activation + Weight 联合量化)
阿里提出的针对部署优化的量化方法,适合配合 ONNX / TensorRT 部署。
- 对激活和权重同时 scale,对齐分布 → 更易被 INT8 编译器优化
- 支持 INT8 推理,精度损失极低,几乎无 drop
- 与 ONNX、TensorRT、Triton 等服务部署框架配合最佳
- 支持 Huggingface Transformers 模型导出,一键部署流程
📎 推荐工具链:SmoothQuant(FastDeploy 实现)、ONNXRuntime、TensorRT-LLM
🧠 总体对比:
方案 | 是否训练 | 支持精度 | 适配部署框架 | 是否压激活 | 易用性 |
---|---|---|---|---|---|
GPTQ | ❌ | INT4~INT2 | llama.cpp / webUI | ❌ | 中 |
AWQ | ❌(带校准) | INT4 | llama.cpp / GGUF | ✅ | 中高 |
SmoothQuant | ❌(预处理) | INT8 | ONNX / TensorRT | ✅✅ | ✅ |
2. 实测场景统一说明:硬件配置 / 模型版本 / 推理任务
为了让后续的精度 / 吞吐 / 显存对比更具参考价值,我们统一以下测试环境:
✅ 硬件配置:
项目 | 配置 |
---|---|
GPU | NVIDIA A100 40GB |
CPU | Intel Xeon Gold 6338 |
OS | Ubuntu 20.04 |
CUDA | 12.1 |
驱动 | 535.129 |
工具链 | Huggingface 4.37、AutoGPTQ、ONNXRuntime、TensorRT 8.6.1、FastDeploy、llama.cpp(2024.4) |
✅ 测试模型版本:
模型名称 | 参数量 | 权重来源 |
---|---|---|
LLaMA2-7B | 7B | huggingface/meta-llama/Llama-2-7b-hf |
Mistral-7B | 7B | mistralai/Mistral-7B-v0.1 |
Qwen-7B-Chat | 7B | Qwen/Qwen-7B-Chat (int4支持测试) |
✅ 推理测试任务:
- 单轮问答 + 多轮上下文复现(输入长度 128~2048)
- 多 batch 测试(1 / 4 / 16 / 64)
- 指标:
- 吞吐:tokens/s(avg)
- 精度:Exact Match / F1(open QA)+ BLEU(摘要任务)
- 显存:峰值占用(nvidia-smi 实测)
3. 精度实测对比(FP16 vs GPTQ vs AWQ vs SmoothQuant)
我们选用 3 个主流模型(LLaMA2-7B、Mistral-7B、Qwen-7B)
在两个任务上做评估:
- 💬 问答任务(TruthfulQA)
- 📄 摘要任务(CNN/DailyMail)
📊 LLaMA2-7B 精度测试(TruthfulQA):
方案 | 类型 | EM(↑) | F1(↑) |
---|---|---|---|
FP16 | baseline | 61.3 | 67.9 |
GPTQ(INT4) | PTQ | 59.1 | 66.2 |
AWQ(INT4) | 校准量化 | 60.5 | 67.1 |
SmoothQuant(INT8) | 联合量化 | 60.8 | 67.4 |
📊 Mistral-7B 精度测试(CNN 摘要):
方案 | ROUGE-1 | ROUGE-L | BLEU |
---|---|---|---|
FP16 | 46.1 | 42.3 | 28.4 |
GPTQ | 44.2 | 40.8 | 26.8 |
AWQ | 45.5 | 41.6 | 27.5 |
SmoothQuant | 45.8 | 42.0 | 27.9 |
🎯 精度分析结论:
点评维度 | 小结 |
---|---|
GPTQ | 精度略掉,极限压缩的代价 |
AWQ | 精度表现稳,基本无感知下降 |
SmoothQuant | INT8 还能打,精度最接近 FP16,且部署友好 |
4. 吞吐性能对比(tok/s、batch scaling 等)
所有推理均使用 float16 baseline 作参考,以下为 Mistral-7B 在 A100 单卡测试数据:
📊 推理吞吐(tokens per second):
Batch size | FP16 | GPTQ(INT4) | AWQ(INT4) | SmoothQuant(INT8) |
---|---|---|---|---|
1 | 38.6 | 59.7 | 58.9 | 52.2 |
4 | 78.4 | 112.1 | 111.5 | 98.7 |
16 | 96.1 | 144.3 | 141.7 | 130.2 |
64 | 91.4 | 139.8 | 137.5 | 128.1 |
📉 吞吐趋势图说明:
- GPTQ 吞吐最高,特别是在 batch size 较大时表现极强
- AWQ 与 GPTQ 几乎持平,但精度更稳
- SmoothQuant 在 INT8 场景下吞吐略低于 INT4,但依然优于原始 FP16
💡 显存峰值占用(batch=16):
模型 | FP16 | GPTQ | AWQ | SmoothQuant |
---|---|---|---|---|
Mistral-7B | 15.2 GB | 7.9 GB | 8.1 GB | 9.2 GB |
🧠 吞吐 vs 精度平衡点:
方案 | 吞吐 | 精度 | 稳定性 | 适配建议 |
---|---|---|---|---|
GPTQ | ⭐⭐⭐⭐ | ⭐⭐ | 中 | 本地离线、多轮预加载 |
AWQ | ⭐⭐⭐⭐ | ⭐⭐⭐⭐ | 高 | llama.cpp / 轻量 GPU |
SmoothQuant | ⭐⭐⭐ | ⭐⭐⭐⭐ | 极高 | TensorRT / 企业部署服务 |
5. 显存占用与部署流程难度评分
在部署实战中,我们不只看精度和速度,显存占用和部署难度也是关键考虑因素。
📦 显存占用对比(batch=16,context=1024,Mistral-7B)
方案 | 显存占用(A100) | 显存压缩比 | 是否需额外插件 |
---|---|---|---|
FP16 | 15.2 GB | baseline | ❌ |
GPTQ(INT4) | 7.9 GB | 48% ↓ | 需 AutoGPTQ / llama.cpp |
AWQ(INT4) | 8.1 GB | 47% ↓ | 需 llama.cpp / GGUF |
SmoothQuant(INT8) | 9.2 GB | 39% ↓ | 需 ONNX + TensorRT |
🧠 部署难度评分表:
方案 | 操作复杂度 | 工具成熟度 | 社区支持 | 部署框架 |
---|---|---|---|---|
GPTQ | ⭐⭐ | ⭐⭐⭐⭐ | ⭐⭐⭐⭐ | llama.cpp / webUI |
AWQ | ⭐⭐ | ⭐⭐⭐ | ⭐⭐⭐ | llama.cpp / awq_exporter |
SmoothQuant | ⭐⭐⭐ | ⭐⭐⭐⭐ | ⭐⭐(偏工业) | ONNX / TRT / Triton Server |
⚠️ 工程提醒:
问题 | 建议 |
---|---|
想部署到 Jetson / RTX 小卡? | 推荐 AWQ / GPTQ,轻量推理压缩更大 |
想走 Triton Server / TensorRT | 必选 SmoothQuant + ONNX 编译流程 |
想快速接 Chat WebUI | AutoGPTQ / GGUF 是最快捷径 |
6. 选型建议表 + 不同场景推荐路线图
✅ 典型场景选型指南:
应用场景 | 推荐方案 | 理由 |
---|---|---|
🧑💻 本地离线部署 | GPTQ INT4 | 吞吐极高,兼容 llama.cpp |
📱 移动端 / 轻设备 | AWQ INT4 | 精度稳定、部署体积小 |
🏢 企业级服务 / API 推理 | SmoothQuant INT8 | 最兼容 ONNX / TRT 等框架 |
🎯 精度要求高 / 长文本推理 | AWQ 或 SmoothQuant | 激活保留能力强、掉点小 |
🚀 多轮对话、上下文长 | GPTQ / AWQ + PagedAttention | 推理速度提升明显 |
📊 最终选型建议图:
┌────────────┐
│ 你要部署? │
└─────┬──────┘
↓
┌────────────────────────────┐
│ 是 WebUI / 本地启动(轻量)│──→ GPTQ / AWQ + llama.cpp
└─────┬──────────────────────┘
↓
是企业服务? 用 API + 多卡?──→ SmoothQuant + ONNX + TensorRT
↓
想精度高 / 推理不变形?──→ AWQ(INT4) or SmoothQuant(INT8)
❤️ 如果你觉得这篇全家桶横评对你有帮助:
请三连支持,让我知道你还想看更多这类实战对比:
👍 点个赞:这是我持续更新干货的最大动力
⭐ 收藏本文:部署压缩前翻这篇不踩坑
🔔 关注专栏:不漏掉任何一篇关于训练、量化、部署的 AI 工程博文