
开源框架实战
文章平均质量分 96
观熵
走在AI与场景融合的前线,关注技术演进、产品迭代与智能时代的创新创业机会。
展开
-
N:M 稀疏结构在部署引擎中的兼容性问题全面解析
什么是 N:M 稀疏?2:4、1:4、4:8 的本质区别与加速潜力 > - 主流部署引擎对 N:M 稀疏的支持现状对比 > - PyTorch → ONNX → TensorRT 的稀疏导出路径与潜在陷阱 > - 稀疏模型的结构固化策略与稀疏内核启用条件 > - 部署失败的常见原因与调优建议原创 2025-04-20 21:18:16 · 739 阅读 · 0 评论 -
压缩模型多版本灰度上线实战:动态拉取 + 权重热更新 + 流量控制机制全解析
本篇我们将构建一个**支持多版本切换 + 灰度上线 + 动态远程加载的压缩部署体系**,涵盖:> - 权重多版本规范命名与存储结构> - 模型动态注册与按需加载机制> - 权重 OSS/S3 延迟加载机制> - 模型灰度发布 + 多版本流量切分路由策略> - 热替换模型的生命周期与版本控制设计原创 2025-04-19 13:57:59 · 853 阅读 · 0 评论 -
多模型压缩部署统一管理系统设计实战:从权重合并到流量调度
本篇将从“压缩后的多模型接入难题”出发,设计并实战一个**压缩模型统一部署与流量调度系统**,涵盖:> - LoRA / QLoRA 权重合并策略与多版本管理> - vLLM + Triton 的多模型部署结构演示> - FastAPI 接口统一封装与模型动态加载> - 流量策略路由(按 token 长度 / 用户身份 / 负载)> - 推理异常探测与健康恢复机制>> 最终构建一个**具备多模型容器管理 + 流量策略调度 + 快速接入能力**的压缩部署中台架构原创 2025-04-18 16:02:08 · 684 阅读 · 0 评论 -
vLLM × LoRA × SmoothQuant 全链路组合实战:从微调到接口部署
本篇将以**可复现 × 可迭代 × 可部署**为目标,提供一条**LoRA 微调 → SmoothQuant 压缩 → vLLM 部署接口化**的完整实战路径。> 我们将不再只讲原理,而是带你走完工程闭环,确保:> - 模型训得动 > - 推理快得起来 > - 接口能接入业务系统 > 本文适合 AI 工程师、MLOps 实践者、想将大模型推理真正产品化的开发者原创 2025-04-18 08:33:39 · 987 阅读 · 0 评论 -
从 LoRA 到 INT4 再到 TensorRT:构建“训练 × 压缩 × 推理”一站式落地链路
大模型部署,从来不是简单的“训完就丢给服务器”这么轻松。尤其是当你面对模型体积、延迟、资源、精度之间的多维度博弈, > 一条真正能落地的大模型路径,必须覆盖**训练微调、量化压缩、推理编译、跨平台部署**等关键链路。 > 本篇将以专家视角梳理一条从 **LoRA 精调 → INT4/INT8 压缩 → ONNX 导出 → TensorRT 编译 → API 服务发布** 的完整实践路径, > 结合 Huggingface、PEFT、GPTQ、SmoothQuant、ONNX、TensorRT原创 2025-04-18 06:30:00 · 869 阅读 · 0 评论 -
指令遵循力提升的底层逻辑:DeepSeek 官方测试与实践启示
模型“听不听话”,不仅取决于你写了什么提示,还取决于模型本身的指令遵循能力。DeepSeek 系列模型上线以来,其在结构化任务、行为限制、格式控制等场景中展现了较强的执行力,尤其在 JSON Mode、系统提示和 function 结构场景中,与 GPT-4.1 有异曲同工之处。本篇文章将从 DeepSeek 官方测试案例出发,结合真实实验与实战输出,对比不同 Prompt 写法在 DeepSeek 中的指令遵循表现,剖析其底层机制、行为差异以及高质量提示词的构造方法。文章不虚构、全可复现,适合希望将 Pr原创 2025-04-18 07:30:00 · 1708 阅读 · 0 评论 -
SmoothQuant、GPTQ、AWQ 全家桶横评:精度 vs 吞吐 vs 兼容性实测报告
你是否遇到过这样的选择困难:训练后的大模型想要部署,却不知道到底该用 **GPTQ、AWQ 还是 SmoothQuant**? > 有的快但精度掉、有的稳但不好接框架、有的部署麻烦但推理极致。 > 本篇文章将围绕 **推理吞吐、精度保持、部署兼容性、显存节省、可维护性** 五个核心维度, > 对主流大模型压缩推理方案进行实测横评, > **结合 INT4/INT8 实验结果 + 代码 + 路线图**, > 帮你在“精度/速度/易用性”三者间找到最优平衡点原创 2025-04-17 22:56:35 · 964 阅读 · 0 评论 -
多卡多节点训练完全指南:TP、PP、ZeRO、FSDP 组合实战配置大全
单卡训练已经无法满足大模型训练需求?A100 不够用了?那你就该掌握**真正的分布式训练武器库**。 > 本篇文章将围绕主流并行策略(张量并行 TP、流水线并行 PP、优化器并行 ZeRO、结构并行 FSDP)展开全面解析, > 从**核心原理 → 参数配置 → 框架使用 → 实战部署组合**,一站式教你搭出稳定高效的多卡训练系统, > 不止能训得动,还能训得稳、训得快。原创 2025-04-17 20:36:24 · 968 阅读 · 0 评论 -
显存爆炸?一文讲透 Gradient Checkpoint + Activation Offload 的显存优化术
我想训个 13B 模型,结果 batch size 只能塞 2?” > “明明还有 5GB 空闲显存,怎么还 OOM?” > 别慌,你不是显卡不行,是没用上这两大显存优化武器:**Gradient Checkpointing** 和 **Activation Offload**。 > 本篇文章将通过原理图解 + 案例对比 + 代码实战,帮你全面掌握这两种核心技术, > **节省显存 30%~50% 不是梦,让你把 batch 提上去,模型训得动!原创 2025-04-17 17:32:29 · 907 阅读 · 0 评论 -
三种并行方式融合全景图:Megatron × DeepSpeed × Colossal-AI 配置对比实战指南
数据并行、张量并行、流水线并行,作为大模型训练的三大核心支柱,往往不是孤立存在,而是**协同使用、互为补充**。 > 本文将带你全面梳理三种并行方式的融合策略,深入对比当前主流三大分布式训练框架(Megatron-LM、DeepSpeed、Colossal-AI)在混合并行部署中的特性、配置方式、性能取向和工程选型建议,帮你选出最适合你项目规模和团队资源的组合方案。原创 2025-04-17 14:02:02 · 902 阅读 · 0 评论 -
统一 API 网关设计实战:REST / gRPC / SSE / WS 多协议模型服务封装
> 随着大模型服务向**平台化、标准化、低门槛开放**方向发展,**统一 API 网关**已成为连接“模型推理服务 ↔ 外部调用系统”的关键中介。>> 传统的 Flask/Python 脚本式部署方式,已经无法满足:> - 多模型版本统一管理> - 不同协议(REST/gRPC/SSE/WS)的高并发接口调度> - 面向前端、移动端、第三方系统的稳定封装与权限控制原创 2025-04-17 09:12:41 · 976 阅读 · 0 评论 -
大模型压缩部署实战:量化、蒸馏与推理加速全流程
大模型越来越强,但部署越来越难。尤其是在多模态、私有化、端侧或企业集成环境中,如何将一个几十GB的大模型压缩、量化、提速、落地,成为工程成功与否的关键。 > 本文将系统讲解 **主流大模型压缩与推理加速技术路径**,包括 INT4/INT8 量化、知识蒸馏、结构裁剪、推理引擎优化(ONNX、TensorRT、vLLM)等内容,结合 Megatron-LM、LLaVA、BLIP2 等框架,搭建一个**“小而快但不失精度”的模型部署链条原创 2025-04-17 06:00:00 · 799 阅读 · 1 评论 -
构建可扩展的 AI 推理平台:多任务 × 多模型 × 多接口统一服务架构设计实战
> 本文将基于实际工程需求,设计一套**“多任务 × 多模型 × 多接口”统一的推理服务架构**,支持:> - ✅ 多模型共存部署(ONNX / TorchScript / TensorRT 等)> - ✅ 多任务调度编排(OCR / 语义理解 / 文本生成 / 意图识别等)> - ✅ 多种 API 调用接口统一封装(REST / gRPC / OpenAPI)> - ✅ 动态扩容、流量调度、权限控制等平台能力原创 2025-04-16 21:10:01 · 845 阅读 · 0 评论 -
量化模型不用 GPU 也能跑得快?一文实测 INT8 CPU-only 推理表现
当 GPU 成本高涨、推理场景轻量化趋势日益增强时,**“在 CPU-only 环境下部署 INT8 量化模型”** 成为一项极具现实价值的技术路径:>> - 服务器端:轻负载业务、边缘节点、嵌入式推理部署 > - 桌面端/移动端:部署 GPT、OCR、分类器等轻模型服务 > - 企业 IT 环境:多数推理任务无 GPU,部署门槛高 >> 本文将基于 ONNXRuntime、OpenVINO 与 PyTorch 量化模型,实测 **INT8 在纯 CPU 环境下的推理性能瓶颈、兼容性问题原创 2025-04-16 18:09:56 · 800 阅读 · 0 评论 -
从训练到部署的全流程压缩工程最佳实践复盘 + 模型上线策略归纳
> “我们该不该压缩?”、“怎么压缩最有效?”、“上线后怎么灰度发布与评估?”>> 本文作为《训练快、推理省》收官之作,将回顾整个压缩工程体系,从训练 → 量化剪枝 → 部署调度 → 性能调优 → 上线策略,提炼出一套通用的实战路径。>> 无论你是模型训练者、部署工程师还是平台运维人员,都能在本篇找到属于你的系统答案。原创 2025-04-16 13:58:37 · 677 阅读 · 0 评论 -
多版本模型热更新机制设计实战
> 本文围绕**多版本模型热更新机制设计**,系统讲解如何做到: > - 新版本模型上线无需重启服务 > - 请求可动态路由至新/旧模型版本 > - 可随时“热切换”“热回滚”“灰度发布”>> 并基于 Triton、vLLM、ONNXRuntime 等主流推理引擎,提供从架构机制 → 工程实现 → 运维联动的完整实践路径。原创 2025-04-16 12:51:56 · 993 阅读 · 0 评论 -
Triton 多模型推理部署 + 调度编排 + 可视化监控全流程指南
NVIDIA Triton Inference Server 是构建大模型推理平台的重要支撑工具,**支持多模型、多框架、动态批处理与 GPU 调度能力**。但在实际企业级落地过程中,我们不仅需要它“能跑模型”,更要它:>> - 支持**多模型并发部署与智能编排** > - 提供**完整的性能监控与运行时追踪** > - 支撑高 QPS 请求下的**稳定调度与资源隔离**原创 2025-04-16 11:30:40 · 618 阅读 · 0 评论 -
vLLM 多实例部署 + Nginx 高并发流量控制架构设计实战
本文将围绕企业级落地场景,系统设计并实战构建一套 **“vLLM 多实例部署 + Nginx 网关调度 + 流量控制”** 架构方案,解决:>> - ✅ 多实例部署架构:GPU 负载均衡 × 进程隔离 × 高可用能力 > - ✅ Nginx 网关限流:流式响应稳定性 × API 扩展性 × 并发保护 > - ✅ 请求调度策略:Round-Robin / Sticky / 权重分配 / 动态容量追踪 > - ✅ 系统优化方案:Timeout 设计、健康探针、GPU 利用率追踪原创 2025-04-16 10:23:29 · 969 阅读 · 0 评论 -
模型能训不能跑?编译失败 × 精度漂移 × 部署踩坑全排查指南
本文将总结模型从训练 → 导出 → 编译 → 推理的全流程中最常见的 12 类故障场景,分类拆解问题本质,给出定位技巧与应对策略,涵盖:>> - ONNX 导出失败、精度掉点、模型结构丢失等导出问题 > - TensorRT 编译异常、插件失效、profile 不匹配等编译问题 > - INT8 / INT4 精度偏移、推理异常、量化误差放大的处理方案 > - 动态 shape 报错、batch size 不一致导致的调度异常原创 2025-04-16 09:13:19 · 755 阅读 · 0 评论 -
INT4 / INT8 推理吞吐横评实战:TensorRT × Triton × ONNXRuntime 全面对比
本文将通过标准大模型推理任务,横向对比 **TensorRT / Triton / ONNX Runtime** 三大部署路径在 INT4 / INT8 模型下的:>> - 支持度(格式兼容性 / Kernel 加速能力) > - 性能表现(吞吐、延迟、GPU 利用率) > - 工程落地难度(导出链路、部署配置、调度稳定性) > - 适配建议(BERT / LLaMA 等模型的实战经验)原创 2025-04-16 08:10:32 · 1052 阅读 · 0 评论 -
ONNX 动态 Shape 导出 + 编译优化实战指南
如何在 PyTorch 中定义并导出支持动态 shape 的 ONNX 模型? > - 如何使用 `onnxsim`、`onnxruntime`、`TensorRT` 等工具链完成动态 shape 模型的编译与性能优化? > - 常见坑点:动态 shape 导出失败、推理时报错、性能下降问题的定位与解决路径 > - 多输入、多分辨率、多 batch size 下的部署策略与调度建议原创 2025-04-16 07:06:25 · 1040 阅读 · 0 评论 -
LoRA × INT8 × 剪枝:多策略联合压缩的实战路径与性能权衡
将系统梳理 **“LoRA × INT8 × 剪枝” 三者的兼容性设计、调参技巧与落地路径**,结合真实模型案例,探索:>> - 多策略联合压缩的设计模式有哪些?如何组合才不冲突? > - 剪枝前量化 vs 剪枝后量化,哪种更鲁棒? > - LoRA 插入点与剪枝结构如何协同而非打架? > - 工程部署中,如何构建一个“模块级融合 + 性能稳定 + 推理友好”的联合压缩 pipeline?原创 2025-04-16 07:03:19 · 1101 阅读 · 0 评论 -
稀疏训练 × Lottery Ticket Hypothesis 实战剖析:从子网络挖掘到部署落地
本文将结合稀疏训练(Sparse Training)、修剪回溯(Iterative Pruning)和可部署稀疏结构设计,系统梳理 LTH 在大模型中的实际操作路径,包括:>> - LTH 理论核心与其在 Transformer 上的演化版本 > - 经典 LTH 实验流程(修剪 → 回溯 → 微调) > - 稀疏训练框架(如 RigL、SNIP、GMP、STR)的算法对比与工程化代码 > - 稀疏结构的部署兼容性与落地建议(ONNX、TRT、vLLM)原创 2025-04-15 20:59:53 · 1057 阅读 · 0 评论 -
混合并行策略下的梯度同步机制与收敛性分析:从理论到工程调优
在大模型训练中,单一并行方式已无法满足显存、吞吐与训练速度的综合要求。当前主流框架(如 Megatron-LM、DeepSpeed、Colossal-AI)普遍采用混合并行(Hybrid Parallelism)策略,即将 Tensor Parallel(TP)、Pipeline Parallel(PP)、Data Parallel(DP)以及 ZeRO 优化技术结合使用原创 2025-04-15 19:07:41 · 763 阅读 · 0 评论 -
结构可学习剪枝全解:从 Dynamic Pruning 到模块级稀疏策略实战
本文聚焦于 **结构可学习剪枝(Structure-Aware / Dynamic Pruning)** 技术,从算法机制、训练融合策略到工程部署落地路径全面解析,帮助你从“剪多少”走向“剪得动 × 剪得准 × 部署得掉”。>> 我们将覆盖:>> - 各类结构剪枝方案的机制与优劣分析(Head、Neuron、Channel) > - 动态稀疏训练(DST) × 可学习门控机制 × L0 正则剪枝策略 > - LLaMA / GPT 等模型上的剪枝实践结果与部署可行性验证 > - 与量化原创 2025-04-15 18:29:54 · 757 阅读 · 0 评论 -
多 GPU 架构下的 Topology-Aware 并行策略:打破通信瓶颈的系统级解法
本文将深入剖析如何结合实际硬件拓扑(GPU 拓扑图 / NVLink / NUMA / 跨节点网络结构),设计**Topology-Aware(拓扑感知)并行策略**,实现真正意义上的 **通信最短路径 × 数据流最优调度**。原创 2025-04-15 17:54:07 · 695 阅读 · 0 评论 -
多模型压缩部署统一管理系统设计实战:从权重合并到流量调度
本文将从**权重统一管理 × 服务集成设计 × 动态注册调度 × 灰度上线机制 × 权重热加载 × 流量智能路由**等角度,系统化构建一个具备「统一入口 × 异构兼容 × 流量可控 × 热插拔上线」的多模型压缩部署平台。原创 2025-04-15 17:17:58 · 851 阅读 · 0 评论 -
从单节点到多节点:构建压缩推理集群的资源调度体系
本文将系统化拆解多节点推理集群的构建路径,带你逐步实现:>> - 推理服务多节点部署架构(GPU/CPU 混布) > - 请求调度器 × 资源编排器协同调度 > - 模型副本 × 实例管理 × 状态感知 × 负载均衡 > - 节点注册 / 心跳 / 自动恢复机制 > - 离线部署 / 弹性容器化 / 微服务调度方案(K8s / ServiceMesh)原创 2025-04-15 16:44:12 · 944 阅读 · 0 评论 -
统一任务调度系统设计:模型压缩推理任务的调度框架与执行流实战
本文将围绕**统一调度系统构建**展开,设计一个具备:>> - 多队列优先级控制 > - 动态 batch 聚合与 KV 缓存融合 > - 模型健康监控 + 动态权重调度 > - GPU 资源状态感知与推理任务分发 > - 支持压缩模型异构调度(GPTQ、AWQ、vLLM 等)原创 2025-04-15 16:22:54 · 581 阅读 · 0 评论 -
流量分层 × 缓存加速 × 请求打包:打造高吞吐的压缩模型推理调度链路
本文将聚焦大模型推理中的**高吞吐链路设计核心机制**,结合流量特征与系统架构,构建一套包括:>> - 请求流量“冷热”分层管理 > - 上游输入 / 输出缓存加速(Token级别缓存 / 多轮缓存) > - 请求打包 / 合并执行策略(如 batch + KV cache 合用) > - 队列调度策略(FIFO / 优先级 / 分片路由) > - 服务限流与过载保护机制(Token 限额 / 超时熔断)原创 2025-04-15 16:01:05 · 817 阅读 · 0 评论 -
混合压缩部署实战:SmoothQuant × GPTQ × AWQ 全对比与兼容性演练
本篇我们将聚焦三大主流压缩路线: - **SmoothQuant**:算子友好、部署兼容性强,适配 vLLM **GPTQ**:精度保留最佳,QLoRA 同源,适合离线量化 **AWQ**:N:M 非对称压缩,自研推理框架性能突出原创 2025-04-15 15:44:02 · 718 阅读 · 0 评论 -
大模型推理三剑客进阶实战:vLLM × TensorRT-LLM × HuggingFace Accelerate 全流程部署演练
本篇将聚焦 Huggingface 模型的三大主流推理引擎: > - vLLM:适用于多轮对话与 streaming 场景,接口兼容 OpenAI > - TensorRT-LLM:面向 GPU 加速的精编优化版本,极致性能表现 > - HuggingFace Accelerate:原生兼容,部署门槛最低,便于实验与小规模服务集成原创 2025-04-15 08:45:00 · 885 阅读 · 0 评论 -
ONNX × TensorRT × vLLM 推理部署路线横评:吞吐、延迟、部署成本全面对比
本篇将以实战视角横向比较三种主流推理部署路径——**ONNXRuntime、TensorRT、vLLM**:>> ✅ 全链路评估:**吞吐 / 首 token 延迟 / 多并发 / 内存占用** > ✅ 工程成本评估:**部署门槛 / 调优难度 / 兼容性 / 开源活跃度** > ✅ 适配建议:**LoRA、量化、QKV结构、streaming 等支持对比**>> 不管你是想部署 QA、ChatBot、摘要、文案、知识问答, > 都能从这篇中选出**最适合自己场景的推理方案路线图**原创 2025-04-15 00:29:30 · 891 阅读 · 0 评论 -
深度解析 AllReduce × ReduceScatter:通信性能优化与异构调度实战指南*
深入解析各类通信操作在并行训练中的位置与影响、NCCL 调度机制、拓扑感知通信路径选择, 并辅以多节点性能实测、GPU 拓扑建模、参数调优建议, 为你构建一套真正实用、可调优、能应对大规模多卡集群的通信优化实践体系原创 2025-04-15 00:28:38 · 1018 阅读 · 0 评论 -
压缩大模型还不够快?LoRA × QLoRA × AdaLoRA 差异与组合策略实战指南
当你的大模型已经训好了、但成本太高、吞吐太低、部署太慢,你该怎么办?别急着剪枝或量化,先看看参数高效微调的组合拳怎么打。 > 本篇将带你深入理解 LoRA、QLoRA、AdaLoRA 三种主流“轻调节压缩方案”的技术本质与适配场景,并结合实际训练和推理部署经验,帮你评估:> - 哪种更适合你的模型结构? > - 如何节省参数、显存、训练时间三件套? > - 多策略是否能组合使用?如何融合落地?原创 2025-04-14 19:24:05 · 971 阅读 · 0 评论 -
训练快了,但不收敛怎么办?大模型收敛策略与损失震荡排查指南
你终于搞定了多卡并行、混合精度、显存优化,模型跑起来了,却发现 —— **loss 根本不降、甚至 nan**? > 是 batch size 太小?是学习率太高?还是 LayerNorm 没配好? > 本篇聚焦「大模型收敛性」这个工程师最容易忽视的关键点,从**常见震荡原因 → 超参调优策略 → 结构稳定性设计 → 实战排查工具链**, > 帮你从“不收敛”走向“快收敛、稳收敛、可复现”原创 2025-04-14 17:55:15 · 831 阅读 · 0 评论 -
INT4 / INT8 横评:GPTQ、AWQ、SmoothQuant 谁才是推理最优解
当你的模型已经训好,下一步就是压缩部署,但面对 GPTQ、AWQ、SmoothQuant 这三套热门工具方案,选谁最优?怎么选?能不能组合用? > 本篇不讲概念,只讲实测对比。我们围绕 **推理吞吐、精度损失、显存节省、部署兼容性、社区活跃度** 五个维度,横评这三大 INT4/INT8 主流工具链,帮你快速决策哪种最适合你的业务场景。 > 想量化不踩坑?想用得稳、用得准、跑得快?这篇必须收藏。原创 2025-04-14 22:00:00 · 1507 阅读 · 21 评论 -
ONNX 还适合大模型吗?TensorRT × SmoothQuant 推理加速组合拳实测报告
大家都在说 vLLM、GPTQ、llama.cpp,但你是不是也遇到过这样的场景: > **需要部署一个高吞吐 LLM 服务,平台要求轻量、低延迟、支持 TensorRT?** > 本文围绕“**ONNX × TensorRT × SmoothQuant**”三件套,从模型导出到引擎构建,从精度测试到吞吐 benchmark,一步步带你评估这条路线是否适合你的业务场景。 > 是“未来感”的部署解法,还是“还不够成熟”的实验路径?这篇文章,带你一次看清。原创 2025-04-14 21:30:00 · 898 阅读 · 0 评论 -
训练快,但推理还是卡?vLLM 推理引擎的吞吐逻辑与落地部署全攻略
模型你已经量化了,LoRA 你也插了,结果部署上线还是卡?别急着怼模型大小,这锅可能是推理引擎的事。 > 本篇我们聚焦 vLLM 这个当下开源界最🔥的推理引擎,聊清楚它的**核心吞吐原理(PagedAttention)**、**部署参数调优技巧**、**兼容模型格式(GPTQ、HF原生)**、**常见性能误区和上线踩坑指南**。 > 想把一个 7B 模型部署成可并发的 LLM 微服务系统?你一定不能错过这篇原创 2025-04-14 20:45:00 · 1047 阅读 · 0 评论 -
一图搞懂 LLM 全流程训练加速:TP / PP / ZeRO / QLoRA 全栈融合实践指南
单靠 Data Parallel 已经喂不动大模型了?别怕,这一篇教你组合拳全拉满。 > 本文以「结构图 + 模块解构 + 落地实操」三段式,带你吃透 LLM 全流程训练中的主流加速策略:**张量并行(TP)、流水线并行(PP)、显存优化黑科技 ZeRO,以及微调之王 QLoRA**。 > 从显存爆炸 → 显卡分组 → 大模型拆层 → 显存分片 → 插 LoRA 微调头,这一套组合拳怎么配最省?本文一次讲清。原创 2025-04-14 20:15:00 · 815 阅读 · 0 评论