
深度学习
文章平均质量分 97
观熵
走在AI与场景融合的前线,关注技术演进、产品迭代与智能时代的创新创业机会。
展开
-
从零构建企业级多智能体系统:LangGraph 全流程实战 + 部署指南(含代码与架构图)
> 在大模型应用爆发的今天,如何构建一个可协作、可调试、可部署的多智能体系统?LangGraph 正在成为工程师的新宠。本文从原理剖析、流程建模、代码实战到前后端部署,手把手带你用 LangGraph 构建一个企业级 AI 助理系统,整合财务分析、法务审阅、报告生成与图表可视化等 Agent 模块,全面打通从用户输入到报告输出的全链路闭环。适合有工程思维的 AI 架构师、Agent 研发人员、以及大模型项目实践者。原创 2025-04-08 20:03:49 · 1290 阅读 · 0 评论 -
RAG 终极优化指南:从入门到高阶实战,全链路打造高效智能检索生成系统
本指南深入解析 RAG(Retrieval-Augmented Generation) 的核心技术,并提供系统化的优化策略,涵盖检索召回率提升、增强策略优化、答案生成精度控制等关键环节。通过 FAISS + BM25 混合检索、Rank-BERT 重排序、减少幻觉 等方法,提升系统的准确性与可解释性。结合 完整代码示例,帮助开发者快速搭建高效的 RAG 系统,并探索 多模态 RAG、个性化 RAG 等未来发展方向。原创 2025-03-21 19:16:30 · 694 阅读 · 0 评论 -
Answer Correctness 及检索召回效果评估:从原理到代码实现的技术详解
Answer Correctness 衡量生成答案与真实答案之间的准确性事实正确性(Fact Correctness):答案中的事实是否与真实答案一致。语义相似度(Semantic Similarity):答案与真实答案在语义层面的匹配程度。在 RAG 应用中,检索的质量决定了最终答案的可信度。:评估检索召回的参考信息(contexts)中与准确答案相关的条目是否排名靠前、占比高(信噪比),侧重相关性。:评估 contexts 与 ground_truth 的事实一致性程度,侧重事实准确度。原创 2025-03-20 15:12:35 · 724 阅读 · 0 评论 -
如何计算Answer Correctness指标:从原理到代码实现的技术详解
Answer Correctness衡量生成答案与真实答案之间的准确性事实正确性(Fact Correctness):答案中的事实是否与真实答案一致。语义相似度(Semantic Similarity):答案与真实答案在语义层面的匹配程度。原创 2025-03-20 15:04:30 · 606 阅读 · 0 评论 -
如何通过Ragas对RAG应用进行评测:原理、指标与实战案例
Ragas是专为RAG(检索增强生成)系统设计的自动化评估框架,通过结合大型语言模型(LLM)推理与向量相似度分析,解决传统评估方法依赖人工标注和黑盒问题的局限原创 2025-03-20 14:47:39 · 1050 阅读 · 0 评论