
DeepSeek 实战与解析
文章平均质量分 97
聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
观熵
走在AI与场景融合的前线,关注技术演进、产品迭代与智能时代的创新创业机会。
展开
-
DeepSeek 深度强化学习引擎在多智能体系统中的应用实战:策略学习与推理决策融合路径全解
在传统智能体架构中,行为决策大多基于静态规则或模版,但在复杂、动态、多步骤的任务中,这种方法无法满足智能体的进化需求。**强化学习(RL)提供了一种策略优化的通用解法,而 DeepSeek 则是多智能体系统中极具代表性的强化学习引擎。** 本篇将以工程实践为核心,解析 DeepSeek 的策略学习架构、训练流程与多 Agent 推理融合方法,讲透如何在实际系统中部署一个“会学习的 Reasoner”,并实现从经验中优化 Agent 行为策略。原创 2025-04-24 20:20:57 · 652 阅读 · 0 评论 -
把 CoreML 模型部署到 iPhone 上有多难?我用 DEEPSEEK 构建了一套 Swift 推理链
- 一句话帮我写 PyTorch → CoreML 的转换脚本 - 自动生成 Swift 的模型调用代码 - 封装输入图像预处理逻辑 + UI 展示框架 - 生成推理结果结构体 + debug 日志 + benchmark 工具你不需要懂 Xcode 也能跑通整个推理流程。原创 2025-04-11 14:30:00 · 826 阅读 · 0 评论 -
把视觉算法部署到手机上有多难?我用DeepSeek 整出了一套自动闭环流程
从 Python 写好一个视觉模型,到它真正跑在安卓设备上,中间横跨:- 模型导出 → 模型转换(ONNX/TFLite/NCNN) - 推理优化 → 接口封装(JNI、NDK) → UI 演示 - 再到预处理、后处理、性能测试、脚本生成……整个过程不但耗时、繁琐,而且容易踩格式、兼容性、精度损失等坑。本篇文章就带你实战一把:**如何用 DEEPSEEK 高效协助我们完成从 PyTorch → NCNN → Android 的完整部署路径**。 一套闭环流程搞定原创 2025-04-11 09:57:07 · 1120 阅读 · 0 评论 -
技术 Leader 的效率法宝:如何用 DeepSeek 审查 PR 与推动技术决策?
这一篇我们就从**PR 审查 → 代码风险发现 → 技术选型判断 → 架构评估文案生成**等 4 个 Leader 高频场景,讲清楚**如何让 DeepSeek 真正参与到你的技术管理工作流中**。原创 2025-04-10 09:09:18 · 650 阅读 · 0 评论 -
混合栈写法谁不头疼?我靠 DeepSeek 写通了整条调用链
在真实项目里,“一个项目只用一种语言”早就成了过去式。现在的工程师越来越常面对:- 用 TypeScript 开前端,要调用后端 Java 接口 - 用 Python 写逻辑,底层性能瓶颈用 Rust 提升 - 一个服务里混着 JSON 接口、gRPC 通信、Shell 脚本、C 扩展…… 这就是“混合栈开发”的现实。而混合栈最大的难点在于:**不同语言之间的互调逻辑写法差别巨大,门槛高、资料少、调试难、易踩坑。原创 2025-04-09 16:34:20 · 1108 阅读 · 0 评论 -
RAG 工程师的最强助手:用 DeepSeek 优化向量检索与提示词策略
构建一个好用的 RAG 系统,需要的不只是一个 embedding 模型 + 向量数据库,更关键的是:**你能否设计出真正有效的“提示链 + 检索逻辑 + 接口服务”**。而在这个过程中,最大的问题往往不是模型效果,而是工程效率:- 提示词链条复杂,写一个 prompt 可能得试十几轮 - 向量检索代码繁琐,拼参数 + 控异常 + 连接数据库非常枯燥 - 多轮对话状态保存、历史合并、内容截断逻辑手写极不稳定在这种背景下,DeepSeek 作为代码生成与搜索引擎的组合体,成为 RAG 系统开发原创 2025-04-09 14:55:50 · 1031 阅读 · 0 评论 -
测试工程师的自动化加速器:用 DeepSeek 自动生成高质量测试代码
测试工程师的日常往往被“重复性体力活”填满:写一堆测试用例、构造输入输出、处理 mock 数据、盯边界值和异常情况。而开发人员也常常将测试代码排在“最不想写”的那一列。但现在,借助 DeepSeek 的自然语言编程能力,我们可以彻底改变写测试的方式:- 用一句话生成结构完整、风格统一、语义清晰的单元测试 - 自动识别函数逻辑、补全测试覆盖点 - 快速 mock 外部依赖、生成断言、补边界值用例原创 2025-04-08 17:53:50 · 1104 阅读 · 2 评论 -
10 倍速查文档:用 DeepSeek 替代 Google + Stack Overflow 的正确姿势
不记函数名、不懂 API 细节,也能写出清晰问题用语义而不是关键词去表达你的意图得到结构清晰、示例完整、可直接复用的答案第三章 常见搜索场景实战:怎么问,才能一次就找到你想要的?我们先定一个基础原则:在 DEEPSEEK 里提问,不需要你“学会写关键词”,而是要“像在和懂编程的朋友聊天”。它能理解自然语言描述的开发问题,并返回代码级别的解决方案。下面通过五类场景,带你一一实践。DeepSeek 是你的“开发搭档”,而不是“万能保姆”。它越理解你,你就能越省心。原创 2025-04-08 09:43:14 · 784 阅读 · 0 评论 -
写代码不求人:DeepSeek 如何替你生成 80% 的业务代码?
在日常开发中,程序员花费大量时间在“重复造轮子”:写 CRUD 接口、表单校验、业务逻辑拼接、调用第三方 API 等重复性极强的工作。而 DEEPSEEK 正是解决这一“重复性高、创造性低”开发瓶颈的利器。本篇文章将围绕“如何高效使用 DEEPSEEK 自动生成业务代码”为核心,结合典型的真实开发场景,介绍使用方法、提示技巧、注意事项,以及如何让它真正成为你工作流的一部分,带你从写代码的苦力工转型为设计逻辑的“创作者”。原创 2025-04-08 06:43:46 · 689 阅读 · 0 评论 -
构建你的 AI 智能助手:如何在 Android 中优雅集成 DeepSeek 大模型
这篇文章我们完整搭建了一套 “Android + DeepSeek 模型服务” 的智能助手系统。一套标准化后端服务(OpenAI API 接口)一个能问能答的 Android UI 原型一个可部署、可替换、可拓展的大模型运行框架随着 DeepSeek、Qwen、Moonshot 等国产大模型不断提升,移动端 AI 助手将成为下一个主流交互平台。别再等了,今天就动手,把大模型装进你的 App!欢迎留言,我将持续分享最实战的 AI 工程落地经验。原创 2025-03-27 08:44:04 · 1359 阅读 · 0 评论 -
多 Agent 协作系统(任务分解 + 工具执行)实战扩展:生产环境优化与高效协作
通过将多 Agent 协作系统部署到分布式环境中,我们能够充分发挥每个 Agent 的独立性,并通过协作实现复杂任务的高效执行。结合任务调度、优先级管理、异步执行分布式部署和高可用性设计,我们可以在生产环境中运行一个高效且可靠的多 Agent 协作系统。负载均衡与弹性伸缩:通过 Kubernetes 或 Docker Swarm 实现 Agent 实例的动态伸缩。消息队列与异步任务:引入消息队列系统,解耦 Agent 间的通信,提高任务调度的灵活性。健康检查与自动恢复。原创 2025-03-26 20:19:48 · 798 阅读 · 0 评论 -
用 Docker Compose 部署完整大模型问答系统(DeepSeek-V3 + QLoRA + RAG 实战)
✅ 将 AI 模型从实验走向工程;✅ 解耦训练、推理、检索、前端;✅ 跨平台、跨团队协作复制;✅ 成本可控、更新灵活、安全私有。🧠 不再依赖云服务,你可以拥有自己的私有化 AI 知识中心。原创 2025-03-26 18:30:00 · 433 阅读 · 0 评论 -
如何用 DeepSeek-V3 + QLoRA + RAG 构建垂类知识搜索系统(全流程实战)
高性能 + 可定制 + 可记忆 的行业私有助手系统🔍 用 QLoRA 将 DeepSeek-V3 变得“懂你行业”;📚 用 RAG 提供“懂你数据”的能力;🧠 用本地推理系统部署“你的专属 AI 智能体”。这,就是构建一套企业级 AI 中枢系统的技术底座。原创 2025-03-26 17:30:00 · 721 阅读 · 0 评论 -
使用 QLoRA 实现百万样本级别行业精调:在普通消费级显卡上微调 DeepSeek-V3
✅ 在中等资源设备上训练超大语言模型;✅ 用百万级行业数据打造高质量行业模型;✅ 构建垂直领域智能体(法律顾问、医生助手、财报解读机器人);✅ 无需改动底层模型结构,保持主模型稳定。📌 DeepSeek-V3 + QLoRA 的组合,是开源大模型在产业落地的关键一步。原创 2025-03-26 16:30:00 · 851 阅读 · 2 评论 -
使用 LoRA 微调 DeepSeek-V3 构建垂类智能助手
🔬 打造轻量私有化行业模型;⚙️ 快速适配你的语料和业务;💡 构建多个“可热插拔”的助手(医疗助手、法务助手等)。它不只是参数节省,更是大模型能力“局部定制”的新范式。原创 2025-03-26 15:30:00 · 1433 阅读 · 0 评论 -
使用 vLLM 快速部署 DeepSeek-V3 高效推理服务(完整指南)
❌ 启动慢,占用资源大;❌ 生成延迟高,Token/s 慢如蜗牛;❌ 多并发处理差,容易 OOM;❌ KV Cache 无法复用,重复生成成本高。为了解决这些问题,vLLM(by UC Berkeley)应运而生。特性描述🚀 高吞吐Token 生成速度是 Huggingface Transformers 的 2-4 倍🧠 KV Cache 并行化支持连续多轮对话共享缓存,显著降低冗余计算🔁 动态批处理智能拼批,支持流式响应与并发推理🔧 HuggingFace 兼容。原创 2025-03-26 14:45:00 · 855 阅读 · 0 评论 -
深度实践:如何本地部署 DeepSeek-V3 并与 RAG 系统集成
本篇博客深入解析了如何在本地部署 DeepSeek-V3 模型,并结合 RAG(检索增强生成)技术构建私有化智能问答系统。通过 vLLM 高性能推理引擎加载 DeepSeek-V3,配合向量数据库(如 FAISS)与嵌入模型(如 BGE),实现对本地文档的高效检索与精准问答。文章涵盖模型部署、嵌入生成、向量索引、Prompt 构建、接口调用及优化建议,适合构建企业知识助手、私域搜索引擎等场景。原创 2025-03-26 10:23:08 · 525 阅读 · 0 评论 -
如何本地部署 DeepSeek-V3 模型并与 RAG 系统集成
随着 DeepSeek-V3 的开源,开发者首次可以自由使用一个性能接近 GPT-4.5、完全 MIT 开源的超大语言模型。这为构建私有化智能问答系统打开了大门。原创 2025-03-26 11:00:00 · 407 阅读 · 0 评论 -
DeepSeek-V3-0324 技术深度解析:性能超越 GPT-4.5 的国产大模型登场
✅ 技术上首次国产模型在多个任务超越 GPT-4.5;✅ 架构上采用高效 MoE,兼顾性能与成本;✅ 战略上全面开源,推动 AI 平权;✅ 工程上已经具备实际部署能力,非空谈。📌 这不仅是国产大模型在技术层面的突破,更是对闭源生态的一次有力回应。原创 2025-03-26 06:30:00 · 837 阅读 · 0 评论