
计算机视觉
文章平均质量分 97
本专栏聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例。无论你是科研人员、开发者还是技术爱好者,这里都为你提供深入解析、实战经验和技术趋势,共同探索视觉智能的未来。
观熵
走在AI与场景融合的前线,关注技术演进、产品迭代与智能时代的创新创业机会。
展开
-
打造你的专属数字分身:Stable Diffusion + DreamBooth 实现个性化 AI 头像生成器(实战教程)
在过去的几年里,我们见证了生成式 AI 从“看起来像魔术”走向“实打实能赚钱”。尤其是图像生成领域,随着 Stable Diffusion、Midjourney、DALL·E 等模型的爆发,个性化内容创作门槛被极大降低。而在所有落地场景中,。原创 2025-03-27 10:23:55 · 1200 阅读 · 0 评论 -
把大模型装进相机:打造 AI 驱动的照片修复系统
对图片语义有更深理解:不再仅仅“看图”,而是能描述“这是一个穿蓝裙子的小女孩在跑步,右边是一个电线杆”可以有目的地进行修复:不仅是修复一片模糊区域,而是可以根据上下文“补全楼梯”,“补上人的眼睛”,“重建缺失的背景”支持人机交互:你可以告诉模型“去掉电线”、“修一下闭眼的人”,它能听懂并执行简而言之,我们不再局限于图像滤镜和模板化“美颜算法”,而是拥有了一个会思考的图像修复师。原创 2025-03-27 09:02:19 · 666 阅读 · 0 评论 -
Wake Vision:为 TinyML 量身打造的大规模高质量视觉数据集
Wake Vision 的出现,不仅填补了 TinyML 视觉任务在数据维度上的短板,更重新定义了什么才是可部署的模型训练基础。更大 ≠ 更好,高质量标签才是提升小模型性能的关键更真实 ≠ 更复杂,设计现实友好的挑战集更能促使模型泛化更开源 ≠ 更随意,结合排行榜机制形成正向社区反馈对正在开发低功耗智能摄像头、物联网边缘设备、AI玩具、可穿戴设备的你来说,Wake Vision 无疑是一次值得立即尝试的升级。原创 2025-03-24 10:29:28 · 961 阅读 · 0 评论 -
AI 书写革命:Manus AI 如何突破多语言手写识别极限?
手写识别(Handwriting Recognition, HWR)是一种计算机视觉和自然语言处理(NLP)相结合的技术,旨在将手写文本转换为可编辑的数字文本。它属于光学字符识别(Optical Character Recognition, OCR)技术的一个子领域,并且广泛应用于文件数字化、智能办公、教育评估和医疗文档处理等场景。原创 2025-03-20 07:36:55 · 1497 阅读 · 0 评论 -
智能形状匹配技术全解析:从经典算法到深度学习与神经形态计算【超级详细版】
本研究系统探讨了高级形状特征提取方法,涵盖经典计算机视觉、统计方法、机器学习、深度学习、生成建模及神经形态计算等领域。通过对比HOG、SIFT、PCA、CNN、ViT、GAN、SNN等方法,分析其匹配精度、计算效率、变换鲁棒性和泛化能力。实验基于MNIST、ShapeNet、ModelNet等数据集,验证不同方法的优劣,并提出高效形状匹配、多模态融合、AI for Science等未来发展方向。本研究为自动驾驶、医学影像、工业检测、智能制造等应用提供前沿技术参考,推动形状匹配技术的发展。原创 2025-03-19 16:35:21 · 1291 阅读 · 2 评论 -
一文详解形状匹配的特征提取【传统方法和深度学习方法】
形状匹配(Shape Matching)是计算机视觉中的核心研究领域之一,被广泛应用于 **目标识别、医学图像分析、工业检测、自动驾驶** 等场景。其主要挑战包括 **尺度变化、旋转不变性、仿射变换、遮挡和噪声** 等因素的影响。高效、鲁棒的形状特征提取方法对于形状匹配的成功至关重要。原创 2025-03-19 15:24:44 · 975 阅读 · 0 评论 -
轻量级深度学习模型(ShuffleNet)在边缘设备上的图像分类优化【附源码】
本项目优化 ShuffleNet 以适配 边缘设备(Jetson Nano、树莓派),提升 图像分类 任务效率。通过 模型剪枝、Ghost Conv、量化(INT8)、TensorRT 部署,推理速度提升 3~5 倍。结合 NAS 自动优化 和 多任务学习,支持 智能监控、AIoT、无人机视觉,实现 低功耗高效推理 。原创 2025-03-19 07:30:09 · 622 阅读 · 0 评论 -
基于 YOLO + DeepSORT 的智能监控系统(涵盖不同业务场景)【附源码】
本项目基于 YOLO + DeepSORT + 异常行为识别,构建智能监控系统,实现 目标检测、目标跟踪、行为分析 及 远程报警。YOLO 负责 实时目标检测,DeepSORT 跨帧跟踪目标,确保身份一致性,并结合 MediaPipe + LSTM 进行 摔倒、奔跑、打架、入侵检测。系统支持 短信、邮件、Web API 报警,并针对 边缘计算(Jetson Nano)、云端 GPU(TensorRT) 进行优化,加速推理性能。适用于 智慧安防、工厂监控、智慧交通 等场景。原创 2025-03-19 07:29:48 · 869 阅读 · 0 评论 -
基于 GAN 的 AI 自动模糊人脸:图像隐私保护方案【附源码】
本项目基于 YOLO + GAN 实现 AI 自动模糊人脸,用于 智能监控、社交媒体、隐私保护。YOLO 负责 检测人脸区域,GAN 生成 自然模糊效果,比传统 高斯模糊、像素化 更真实。支持 静态图像、实时视频流处理,并提供 Flask Web API 便于集成。系统优化包括 TensorRT 加速、边缘计算适配(Jetson Nano),提升检测速度。未来可优化 GAN 模糊效果,支持 智能人脸白名单 及 分布式隐私保护,适用于 公共场所监控、社交平台隐私管理、医疗隐私保护 等场景。原创 2025-03-19 07:28:53 · 1016 阅读 · 0 评论 -
基于 OpenPose 的人体姿态估计系统:用于体育分析和健身动作识别【附源码】
本项目基于 OpenPose 进行 实时人体姿态估计,适用于 体育分析、健身指导、康复训练。结合 3D 姿态估计(MediaPipe)、运动轨迹分析、多人追踪(DeepSORT),优化 运动评分、语音交互(GPT + 语音助手)。通过 Jetson Nano 部署、ONNX 转换、TensorRT 加速 提升推理速度,适配 嵌入式设备,可实时分析 深蹲、俯卧撑、跑步 等运动,提供 智能反馈与训练建议,打造 AI 健身教练 。原创 2025-03-19 10:00:00 · 1179 阅读 · 3 评论 -
基于深度学习的图像修复系统设计与实现(附源码)
本项目构建基于 深度学习 的 图像修复系统,结合 Transformer + CNN + 扩散模型 提升修复质量,适用于 照片恢复、医学影像填补、视频修复 等场景。系统采用 Swin Transformer 进行高效特征提取,扩散模型提升细节填补,并通过 知识蒸馏、剪枝、量化 进行 轻量化优化,适配 Jetson Nano、移动端。此外,支持 文本 + 深度信息引导修复,增强语义控制。实验表明,优化后的模型在 Places2 数据集 上 SSIM 达 95.4%,推理速度提升 2.5 倍。原创 2025-03-18 17:12:24 · 1212 阅读 · 1 评论 -
基于 Attention 机制的医学影像(X-ray、CT)分类系统【附源码】
本项目基于 Attention 机制 设计 医学影像(X-ray、CT)分类系统,结合 CNN 提取空间特征 与 通道/空间注意力机制,提升 关键区域识别能力,适用于 肺炎、肺结节、骨折等疾病检测。优化后的 Attention-CNN 在 ChestX-ray14 和 LUNA16 数据集上分类准确率达 94.2%,推理速度提升 2.5 倍,可适配 Jetson Nano、树莓派 等边缘设备。系统支持 Grad-CAM 可视化、ONNX 部署、Flask API 远程调用,便于实际应用。原创 2025-03-18 16:58:48 · 431 阅读 · 0 评论 -
基于 ShuffleNet 的轻量级图像分类优化(适用于边缘设备)【附源码】
本项目基于 ShuffleNetV2 设计 轻量级图像分类系统,适用于 边缘设备(Jetson Nano、树莓派等)。通过 模型剪枝、量化、ONNX 部署,大幅降低计算量,使模型更适配 低功耗 AI 设备。实验表明,优化后的 ShuffleNetV2 模型大小减少 80%,推理速度提升 3.2 倍,在 CIFAR-10 上达到 92.3% 的准确率,推理时间仅 80ms/图像。系统支持 TensorRT 加速、Web API 部署,可用于 智能监控、移动端 AI 视觉 等场景。原创 2025-03-18 16:39:23 · 349 阅读 · 0 评论 -
基于 Vision Transformer(ViT)的植物叶片病害分类系统【附源码】
本项目基于 Vision Transformer(ViT) 设计 植物叶片病害分类系统,支持 高精度分类、可视化分析和实时推理。在 PlantVillage 数据集 上,ViT 达到 96.2% 的准确率,并优化 模型量化、梯度累积、混合精度训练,降低计算成本。系统支持 Web 交互(Gradio)、移动端(TFLite/ONNX)和 API 部署,可应用于 智慧农业、病害监测 等领域。未来优化方向包括 知识蒸馏、CNN+Transformer 结合、边缘设备适配,以提升推理速度和应用落地能力。原创 2025-03-18 16:31:21 · 943 阅读 · 0 评论 -
基本图像处理运算与行业最新技术的应用
本博客系统介绍了基本图像处理运算,包括像素级点运算、直方图分析、邻域卷积、数学形态学及统计算子,结合 Python(OpenCV、NumPy)和 MATLAB 示例,深入解析核心算法。进一步探讨深度学习在图像去噪、超分辨率、风格迁移中的应用,并分析 GPU 并行计算如何加速图像处理任务。结合 Google(RAISR 图像增强)、Tesla(自动驾驶视觉)、OpenAI(DALL·E 文本生成图像)等行业案例,展示前沿技术如何落地应用。原创 2025-03-18 14:20:14 · 794 阅读 · 0 评论 -
基于 MobileNet 的移动端实时食品识别系统【附源码】
本项目基于 MobileNetV2 设计轻量级 移动端食品识别系统,支持 实时分类、营养分析和 API 部署。系统优化了 模型量化、剪枝,在 保持 91.8% 准确率 的同时,将模型大小减少至 14MB,推理速度达 60FPS,适配 Android/iOS。项目提供 TensorFlow Lite 部署、Flask API 服务器,支持 50+ 食品类别,并集成 营养数据库,未来优化方向包括 Transformer 结构、OCR 成分识别,提升复杂食品分类能力。原创 2025-03-18 16:14:11 · 791 阅读 · 0 评论 -
基于 CNN 的智能垃圾分类系统【附源码】
本项目基于 CNN 设计智能垃圾分类系统,采用 PyTorch 训练 ResNet50、VGG16、EfficientNet-B3 模型。实验表明,EfficientNet-B3 以 94.1% 的准确率表现最佳。系统支持 Gradio 部署,用户可在线分类垃圾。未来优化方向包括 Transformer 结构和模型蒸馏。原创 2025-03-18 15:57:53 · 747 阅读 · 0 评论 -
深度学习物体追踪识别算法的 C++ 实现及移动端部署【附源码】
本博客介绍基于 YOLO + DeepSORT 的深度学习物体追踪算法,使用 C++ 实现,并优化至 Android/iOS 设备。YOLO 负责目标检测,DeepSORT 进行多目标追踪。文章涵盖 TensorFlow Lite / ONNX Runtime 推理、DeepSORT 关联、OpenCV 处理,并探讨 GPU 加速、模型量化、移动端适配优化 以提升性能。最后,提供 Android/iOS 部署流程,包括 TensorFlow Lite 和 CoreML 集成,适用于开发者和计算机视觉研究者。原创 2025-03-18 15:45:46 · 710 阅读 · 0 评论 -
【计算机视觉】特征提取一文详解
介绍了计算机视觉的核心技术,涵盖低级特征提取、边缘检测、相位一致性、图像运动分析、特征定位等关键内容。文章从梯度检测(Sobel、Canny)、相位一致性(Phase Congruency)、傅里叶变换、多尺度Gabor滤波等数学原理入手,结合代码示例解析其应用。同时,探讨角点检测、光流估计、特征匹配等高级方法,并结合深度学习、Transformer、自监督学习、多模态融合等前沿技术,分析视觉智能的最新趋势。详细介绍计算机视觉在自动驾驶、医疗影像、工业检测、AR/VR等领域的应用。原创 2025-03-18 15:26:12 · 1331 阅读 · 0 评论 -
一文读懂计算机视觉:技术原理、核心算法与应用实践
计算机视觉(CV)正经历从传统图像处理向深度学习、大模型、自监督学习、多模态融合的跃迁。本文系统解析CV核心算法,包括CNN、Transformer、生成式AI(GAN、Stable Diffusion)、自监督学习(MAE、DINO)等,并深入探讨其在自动驾驶、医疗影像、工业质检、AR/VR等领域的应用。最新研究表明,视觉Transformer(ViT、Swin)正逐步取代CNN,CLIP、ALIGN等多模态大模型显著提升CV能力。生成式AI在图像、视频、3D建模方面已广泛应用,NeRF重塑虚拟场景构建。原创 2025-03-18 13:43:19 · 493 阅读 · 0 评论 -
图像、采样与频域处理:从理论到工业实践
本研究探讨了图像与信号的频域处理技术,包括傅里叶变换(DFT/FFT)、频域滤波、图像增强及工业应用。通过Python和MATLAB示例,演示FFT计算、频域去噪、锐化等核心方法。工业案例涵盖自动驾驶摄像头预处理、医学CT成像重建(Radon变换+滤波反投影)及5G基站FFT加速,展示频域方法在计算机视觉、医学影像与无线通信中的应用价值。研究强调高效FFT算法的优化,如GPU加速和专用硬件实现,为工程师和研究人员提供从理论到实践的系统指导。原创 2025-03-18 13:27:49 · 664 阅读 · 0 评论