
深入理解 TensorRT
文章平均质量分 97
观熵
走在AI与场景融合的前线,关注技术演进、产品迭代与智能时代的创新创业机会。
展开
-
构建视觉问答 Agent:TensorRT × QFormer × LLM 的极致部署方案
视觉问答(VQA)系统正在成为多模态 Agent 的核心能力之一。从图像感知、图文融合到语言理解,一个稳定、高效的部署方案需要处理多模型协同、上下文共享、输入预处理、推理异步执行等复杂链路。 > 本文将基于 TensorRT + QFormer + LLM 的组合方案,构建一个**具备视觉理解 + 语言生成能力**的 Agent 系统。聚焦如何落地部署 BLIP2 / MiniGPT4 / LLaVA 结构,支持本地推理、缓存特征复用、资源调度优化,并最终封装为一个服务化 API。原创 2025-04-13 10:33:33 · 1047 阅读 · 2 评论 -
TensorRT × 边缘多模型部署指南:Jetson / Orin / L4 / Android 端高效推理实战
在越来越多的 AI 应用走向终端与边缘侧,构建一个轻量、高效、可控的多模型推理系统变得尤为关键。Jetson、Orin NX、L4、甚至 Android 手机,都有自己的资源约束与优化策略。 > 本文将系统讲解如何在边缘平台部署多个 TensorRT 模型,进行推理任务调度、显存资源管理、INT8 精度优化、插件替代机制与轻量 API 构建,帮助你构建真正能“跑得动”的本地 AI 系统。原创 2025-04-13 09:58:51 · 913 阅读 · 0 评论 -
构建多模型智能推理服务:TensorRT × Triton × LLM 协同部署全链路实战
多模型协同系统不只是“模型堆叠”,而是一个完整的智能推理服务:包括服务入口、多任务调度、推理链路追踪、错误恢复机制与监控指标体系。 > 本文将以 TensorRT(视觉推理)+ LLM(语言理解)为核心,结合 Triton、FastAPI、vLLM,构建一个具备“多模型动态调度、任务链执行、资源隔离、负载均衡”的多模态智能服务体系。帮助你从“多模型试验”走向“智能推理产品线”。原创 2025-04-13 06:30:00 · 892 阅读 · 0 评论 -
TensorRT + LLM 多模态推理协同部署:高吞吐 × 精度稳定的系统级方案
多模态系统正在成为 AI 应用的主流架构,如何将语言大模型(LLM)与视觉模型(如 CLIP、BLIP、SAM、YOLO)协同部署,是落地 AI Agent、VQA 系统、文图检索、场景分析的关键。 > 本文将从工程角度深入讲解如何使用 TensorRT 构建多模型异构部署体系,支持 LLM 与视觉模型协同调度,包括:多后端模型分发、动态任务图管理、显存隔离与上下文共享、异步管线执行、跨模型 Plugin 复用等能力。最终构建一个**具备高性能、可扩展、稳定性的多模态智能引擎原创 2025-04-12 23:37:06 · 982 阅读 · 0 评论 -
TensorRT Plugin + Engine 多模型调度:多任务部署的性能优化策略
在真实 AI 工程项目中,往往不仅需要部署一个模型,而是多个任务模型(如识别 + 检测 + 分割 + OCR)协同运行,甚至每个模型都使用了不同的精度(FP16/INT8)、不同的输入维度,甚至包含自定义 Plugin。 > 本文将深入讲解如何在 TensorRT 中实现 **多模型 Engine 并行部署、调度与资源优化**,包括多 Stream 执行、多上下文管理、显存复用策略、Engine 缓存池设计,以及 Triton / Python / C++ 多种部署方式对比,帮助你构建真正工业级可交付的原创 2025-04-12 21:42:00 · 764 阅读 · 0 评论 -
TensorRT INT8 校准实战指南:静态 + 动态量化全流程解析
想把模型部署在边缘设备?想再提升一倍推理速度、节省 60% 显存?你需要掌握 TensorRT 的 INT8 推理能力。本文将从校准原理、TensorRT 支持机制讲起,详细讲解如何基于 ONNX 模型执行静态校准(PTQ)、结合 QAT 模型进行动态量化、编写自定义校准器、评估精度下降、实现工程部署闭环。附送真实项目优化案例与常见踩坑合集,帮助你让模型“压得动、跑得快、精度不掉队原创 2025-04-12 20:05:14 · 724 阅读 · 0 评论 -
TensorRT 高级用法:Plugin 自定义层开发 + 多输入模型部署技巧
在实际部署中,我们经常会遇到 TensorRT 不支持某些算子、模型有多个输入输出的情况。这时,就需要掌握 TensorRT 的高级用法 —— 自定义 Plugin 机制 与 多输入模型构建方式。本文将详细拆解 Plugin 的编写逻辑、注册流程、INT8 支持、动态 shape 接入等关键点,同时结合多输入网络的构建与推理流程,提供完整的 Python 与 C++ 实例,帮助你掌握 TensorRT 真正的“扩展能力”原创 2025-04-12 17:57:50 · 1045 阅读 · 0 评论 -
部署落地篇:TensorRT 在服务器 × Jetson × 移动端的实战指南
光有优化还不够,部署落地才是价值变现的关键一步。本篇将从工程实践角度,带你完整走一遍 TensorRT 在三大平台(服务器端、Jetson 边缘设备、移动端嵌入部署)上的部署路径。每个平台不仅有环境搭建、模型部署的标准流程,更有实战技巧、踩坑经验与平台选型建议,帮助你构建真正可运行、可交付的 AI 推理方案。原创 2025-04-12 15:18:43 · 791 阅读 · 0 评论 -
TensorRT 核心加速机制拆解:Layer Fusion、精度优化与图调度全解析
TensorRT 为什么推理能快 3 到 10 倍?这背后并不只是算力差异,更关键是它对网络结构、算子执行、内存管理等全链路做了高度优化。本文将从 Layer Fusion、精度压缩、内核调度、张量复用等四大角度,逐一拆解 TensorRT 的核心加速机制,并辅以实际例子与可视化 benchmark,帮助你构建起性能调优的系统认知。原创 2025-04-12 11:39:32 · 971 阅读 · 0 评论 -
PyTorch → ONNX → TensorRT:模型转换实战全流程与踩坑指南
想用 TensorRT 部署 PyTorch 模型,第一步就是完成 ONNX 导出与转换流程。但很多开发者在导出 ONNX 时就踩了坑,在转 engine 时又报错一堆。本文将从实战出发,手把手带你完成 PyTorch → ONNX → TensorRT 的标准流程,讲透常见问题、调试方法、转换工具使用技巧,确保你能“0 中断”地完成部署第一步。原创 2025-04-11 20:57:42 · 1311 阅读 · 0 评论 -
为什么部署要选 TensorRT?架构原理与应用全景一文讲透
在深度学习推理部署领域,TensorRT 凭借强大的性能优化能力与广泛的硬件适配性,已成为工业界事实上的标准方案之一。本文将从部署痛点切入,深入解析 TensorRT 的核心设计理念、架构流程与典型应用场景,帮助你建立对这一部署神器的全景式认知。如果你正在为模型落地效率发愁,这篇文章将是你开启加速优化之路的第一步。原创 2025-04-11 20:25:54 · 1050 阅读 · 0 评论