
扩散模型工程指南
文章平均质量分 96
本专栏系统性拆解扩散模型(Diffusion Models)的底层原理、模型架构、训练范式、推理机制与部署路径。
从 DDPM 到 Stable Diffusion,从 UNet 到 ControlNet,从理论公式到工程调优,每篇文章都面向真实工程落地场景,聚焦高质量生成、多模态控制、性能优化与生
观熵
走在AI与场景融合的前线,关注技术演进、产品迭代与智能时代的创新创业机会。
展开
-
Denoising Score Matching 到 SDE 建模:扩散模型的连续视角与工程落地路径
扩散模型最初基于离散时间步马尔可夫链构建,随着理论研究推进,其底层建模视角逐渐从“噪声预测”转向“score function 估计”。Denoising Score Matching(DSM)为此提供了理论基础,通过最小化数据分布梯度与噪声扰动后的梯度差异,使模型更精确地掌握数据流形结构。进一步发展中,SDE(Stochastic Differential Equations)与概率流 ODE 等连续建模范式被广泛引入,代表性模型如 Song 等人提出的 Score SDE、EDM(Elucidated原创 2025-06-08 14:00:00 · 595 阅读 · 0 评论 -
DDPM 原理详解:正向扩散与反向采样机制的工程实践解析
DDPM(Denoising Diffusion Probabilistic Models)作为扩散模型的基础形态,提出了一种以马尔可夫链为核心的图像生成方法,通过逐步添加噪声破坏图像,再训练神经网络逆转该过程以恢复清晰图像。其训练过程稳定、采样路径可控、生成质量高,已成为诸如 Stable Diffusion、Imagen、DALL·E 3 等现代大规模生成模型的底层核心框架之一。本文聚焦 DDPM 的工程实战路径,围绕正向扩散建模细节、反向采样过程实现、关键超参设置与推理调度优化展开,结合 Huggin原创 2025-06-07 11:22:46 · 884 阅读 · 0 评论 -
扩散模型入门:从噪声到生成的一步步演化
扩散模型(Diffusion Models)已成为当今生成模型领域的主流方法之一,从图像、音频到视频、3D生成,扩散模型凭借其稳定性与高保真度逐步取代 GAN 成为工业界主力工具。本文作为专栏首篇,将从零出发,系统梳理扩散模型的基本原理:它是如何将干净的数据“加噪声”进行破坏,又如何通过反向过程“去噪声”逐步还原出真实图像。本篇不涉及复杂公式,重点放在对核心思想、系统流程和工程化思维的讲解,帮助初学者建立整体认知框架,也为后续深入章节打下坚实基础。原创 2025-06-06 20:58:54 · 715 阅读 · 0 评论