
TensorFlow 全栈实战:从建模到部署
文章平均质量分 85
《TensorFlow 全栈实战:从建模到部署》 是一套系统深入的工程实战教程,覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程。适合希望提升 TensorFlow 工程能力的开发者与团队。
观熵
走在AI与场景融合的前线,关注技术演进、产品迭代与智能时代的创新创业机会。
展开
-
【AI + TensorFlow 项目实战】智能问答系统(BERT + QA)
给定一段文本内容(文章/段落)与一个问题,模型自动从文中找出准确的答案片段。问题 + 文本。原创 2025-03-26 08:30:00 · 419 阅读 · 0 评论 -
【AI + TensorFlow 项目实战】多标签情绪识别系统(Multi-label Text Emotion Classification)
给定一段文本(如一句评论、微博、对话),识别其可能包含的多种情绪成分,如:“开心 + 感动”、“愤怒 + 悲伤”、“焦虑 + 疲惫”等。 > 本项目基于文本分类模型,实现多标签输出,支持自定义情绪标签体系,支持部署为 API 服务或嵌入移动端。原创 2025-03-26 07:00:00 · 404 阅读 · 0 评论 -
【AI + TensorFlow 项目实战】Android 翻译键盘(TFLite 模型部署)
将轻量化的文本翻译模型(如 seq2seq)部署到 Android 系统,实现在输入法中自动翻译的功能,支持离线运行。原创 2025-03-26 06:30:00 · 600 阅读 · 0 评论 -
【AI + TensorFlow 项目实战】Web 图像分类器(TF.js 部署)
将训练好的图像分类模型部署到浏览器端,实现前端实时识别。用户可通过上传图片或开启摄像头,直接在网页上完成图像识别,无需后端服务器。原创 2025-03-26 06:30:00 · 1655 阅读 · 0 评论 -
【AI + TensorFlow 项目实战】语音合成器(Text to Speech)
🔊 输入一段文字,模型自动生成对应语音(.wav)。本项目采用经典的 Tacotron2 + Vocoder 架构,是目前工业级 TTS 系统的主流实现路径。原创 2025-03-26 05:30:00 · 840 阅读 · 0 评论 -
【AI + TensorFlow 项目实战】聊天机器人(Mini GPT)
🤖 构建一个简化版 ChatGPT,支持自然语言多轮对话、生成回复、上下文记忆。本项目基于,采用自回归生成策略,并引入Top-kTop-p控制生成质量。原创 2025-03-26 00:07:14 · 751 阅读 · 0 评论 -
从 0 到部署上线,打造你的 AI 工程力:TensorFlow 全栈实战专栏【开篇】【持续更新】
本章作为 TensorFlow 全栈实战专栏的开篇,系统阐述了为何仅掌握模型训练远不足以支撑真实 AI 工程交付,提出“模型 ≠ 产品”的核心观点。通过对 PyTorch 与 TensorFlow 架构差异的深入比较,明确了 TF 在跨平台部署与 MLOps 体系中的工程优势。本章还概览了专栏的完整章节结构与项目体系,为读者构建起从底层机制到工程实践的 AI 技能图谱,奠定全栈成长路径的基础。原创 2025-03-24 11:23:36 · 1715 阅读 · 21 评论 -
Eager Execution 与 AutoGraph 的本质——从动态图到静态图的桥梁
编程方式与 Python 习惯不一致(Session 像个黑盒)调试困难(代码执行顺序与计算图分离)新手门槛高(必须显式构图、管理变量)概念一句话总结让 TensorFlow 代码像 Python 一样直观,适合开发与调试AutoGraph将 Python 控制流自动转为静态图结构桥接 Eager 与 Graph,兼顾可读性与性能tracing构建计算图的过程,需避免频繁触发XLA编译优化器,适合追求极致性能的任务。原创 2025-03-24 11:57:35 · 761 阅读 · 0 评论 -
为什么选择 TensorFlow?一份深度解读与开篇指南
TensorFlow 不只是一个工具,更是一种工程思维方式。如果你想深入理解 AI 系统的构建方式,不仅仅是“调包训练模型”,而是从数据预处理、模型设计、训练优化、到部署上线全链路通透,那么 TensorFlow 是你绕不开的一环。而这个专栏,将是你通向这个全链路视角的一把钥匙。原创 2025-03-24 11:25:47 · 956 阅读 · 0 评论 -
Tensor 数据结构与操作:张量的本质、广播机制与动态图差异
Python语法转换为 TF 图操作if ...:显式控制流包装print(...)Python 列表需使用替代Python 标量变量推荐全部转为 Tensor好的,那我们继续深入第三章,补充更多底层细节与高级用法tf.Tensor内部机制(storage layout、device 属性)和 AutoGraph 中的作用机制更高阶的广播技巧(多维广播陷阱)使用导出图结构和签名AutoGraph 中嵌套循环 + 梯度追踪的协同运作很多用户以为和冲突,其实它们是完全兼容的!原创 2025-03-24 13:09:23 · 981 阅读 · 0 评论 -
【AI + TensorFlow 项目实战】猫狗图像分类器(Dog vs Cat Classifier)
🔰 这是一个典型的图像二分类入门项目,目标是让模型区分“狗”和“猫”的照片。你将使用 TensorFlow 构建一个卷积神经网络,完成从训练、评估、导出到部署的完整流程。原创 2025-03-25 16:00:00 · 360 阅读 · 0 评论 -
多模态与 AIGC:用 TensorFlow 构建图文 / 语音 / 视频生成模型
可配合 vocoder(如 MB-MelGAN)转为 wave 文件。训练时目标是:输入图像 + 前缀文本,预测下一个 token。原创 2025-03-25 14:30:00 · 713 阅读 · 0 评论 -
构建 Transformer / BERT 模型在 TensorFlow 中的完整实现
Transformer 最初由 Google 于 2017 年提出,是 NLP 模型彻底转向“全注意力机制”的关键标志。因为 Transformer 本身不使用 RNN/CNN,不具备“位置信息”,需要手动加入。原创 2025-03-25 13:00:00 · 438 阅读 · 0 评论 -
【AI + TensorFlow 项目实战】新闻摘要生成器(Text Summarization)
输入一段长文本(如一篇新闻稿),模型将自动生成几句话摘要。 > 本项目构建一个 Transformer Decoder 或 BART 风格模型,实现中文/英文新闻的抽取式/生成式摘要任务。原创 2025-03-25 18:00:00 · 923 阅读 · 0 评论 -
TensorFlow in Production:TFX、Serving、Monitoring、流水线部署全栈指南
构建完整 ML 流水线(数据 → 训练 → 验证 → 部署)多阶段组件化复用(Trainer、Evaluator、Pusher)支持本地执行 / Airflow / Kubeflow / Vertex AI 等调度方式])原创 2025-03-25 12:00:00 · 721 阅读 · 0 评论 -
分布式训练与多设备加速:MirroredStrategy、TPUStrategy、ParameterServerStrategy 深度剖析
策略场景特点推荐使用单机多GPU同步训练,易部署✅ 常用Cloud TPU高吞吐量,支持超大 batch✅ 预训练多机自动 AllReduce,同步更新✅ 工程级多机异步异步更新,效率高一致性低高级场景多GPU但内存不足参数放在 CPU特殊情况。原创 2025-03-25 07:56:53 · 800 阅读 · 0 评论 -
模型优化与压缩:量化、剪枝、蒸馏与部署加速
TensorFlow 支持多种量化策略,我们从最简单的开始:最简单、最稳定的方式:仅权重量化,激活保持 float32。✅ 2. 整体整数量化(Full Integer Quantization)训练后 → 全模型量化(包括激活)三、结构剪枝(Pruning)通过训练过程中动态设置某些权重为 0,从而生成稀疏矩阵结构,部署时可以更快。✅ 1. 应用剪枝 wrapper:✅ 2. 编译并训练:✅ 3. 剥离剪枝结构 & 导出:四、知识蒸馏(Knowledge Distil原创 2025-03-25 07:04:47 · 822 阅读 · 0 评论 -
【AI + TensorFlow 项目实战】图像描述生成器(Image Captioning)
🔍 给定一张图像,让模型自动输出一段自然语言描述,类似于 “这是一只在沙滩上奔跑的金毛”。本项目将构建一个图像编码 + Transformer 解码的双模块模型,完成从训练到推理与部署的完整流程。原创 2025-03-25 17:00:00 · 403 阅读 · 0 评论 -
Keras 三种模型构建方式详解:Sequential、Functional、Subclassing 全面解析与实战对比
✅ 模块化 + 图结构,适合搭建任意复杂网络✅ 易于调试(查看中间层张量)✅ 支持模型复用、参数共享✅ 可用于多输入、多输出、残差结构、注意力机制等如果你是:推荐方式初学者,刚开始学习深度学习数据科学家,想快速构建实用模型工程师,需要部署复杂架构到生产研究者,关注灵活性和创新性。原创 2025-03-25 21:11:54 · 890 阅读 · 0 评论 -
Keras 模型系统解剖:Sequential vs Functional vs Subclassing
适合需要控制流(如 if/else、循环)、多个路径、额外 loss 输出的模型。Keras 会自动追踪self.w并纳入训练变量中。原创 2025-03-25 15:00:00 · 835 阅读 · 0 评论 -
AI + TensorFlow 项目实战合集(10 个实用案例)【详细的案例陆续会更新...】
输入长篇新闻,输出几句话摘要。使用 Keras 实现 Transformer Decoder 或 BART-like 模型使用 Beam Search 提高生成质量支持中英文切换关键组件:位置编码、遮蔽 Mask、AutoRegressive 推理项目调度:TFX / Airflow / Prefect模型监控:MLflow + TensorBoard + Prometheus快速原型开发:Gradio / Streamlit。原创 2025-03-25 21:22:32 · 908 阅读 · 0 评论 -
【AI + TensorFlow 项目实战】声音情绪识别系统(Speech Emotion Recognition)
🎧 给定一段音频,判断说话人当前的情绪状态(愤怒、生气、高兴、悲伤……)。该任务广泛应用于情感计算、人机交互、智能客服、心理健康监测等场景。原创 2025-03-25 19:00:00 · 633 阅读 · 0 评论 -
模型部署全流程:SavedModel、TFLite、TF.js、ONNX 的导出与实战
TensorFlow 的最大优势之一,就是拥有“端到端部署闭环”。从训练到导出,用户可根据目标平台灵活选择格式,部署到:本章我们将覆盖四大部署格式,逐一讲清其导出方式、平台支持、转换流程,并通过完整实例演示:✅ 导出 SavedModel:或者:✅ 加载 & 推理:二、TFLite:移动端部署首选格式(安卓、树莓派、MCU)TensorFlow Lite 是面向低功耗设备优化的推理格式,具备:✅ 示例:模型量化(动态范围)也支持整数量化、float16、整型 full-int原创 2025-03-24 23:30:00 · 1290 阅读 · 0 评论 -
训练引擎底层机制:GradientTape、自定义 loss/metrics、fit vs train_step 差异
当你需要完全控制训练流程(比如加入梯度裁剪、多损失分支、GAN 判别器),就要重写train_step方法。# 训练判别器# 训练生成器# ✅ 手动更新 metric 状态return {原创 2025-03-24 23:00:00 · 415 阅读 · 0 评论